首页> 外文期刊>Nature >Tracking photon jumps with repeated quantum non-demolition parity measurements
【24h】

Tracking photon jumps with repeated quantum non-demolition parity measurements

机译:通过重复的量子非爆破奇偶性测量跟踪光子跳跃

获取原文
获取原文并翻译 | 示例
       

摘要

Quantum error correction is required for a practical quantum computer because of the fragile nature of quantum information. In quantum error correction, information is redundantly stored in a large quantum state space and one or more observables must be monitored to reveal the occurrence of an error, without disturbing the information encoded in an unknown quantum state. Such observables, typically multi-quantum-bit parities, must correspond to a special symmetry property inherent in the encoding scheme. Measurements of these observables, or error syndromes, must also be performed in a quantum non-demolition way (projecting without further perturbing the state) and more quickly than errors occur. Previously, quantum non-demolition measurements of quantum jumps between states of well-defined energy have been performed in systems such as trapped ions, electrons, cavity quantum electrodynamics, nitrogen-vacancy centres and superconducting quantum bits. So far, however, no fast and repeated monitoring of an error syndrome has been achieved. Here we track the quantum jumps of a possible error syndrome, namely the photon number parity of a microwave cavity, by mapping this property onto an ancilla quantum bit, whose only role is to facilitate quantum state manipulation and measurement. This quantity is just the error syndrome required in a recently proposed scheme for a hardware-efficient protected quantum memory using Schroedinger cat states (quantum superpositions of different coherent states of light) in a harmonic oscillator. We demonstrate the projective nature of this measurement onto a region of state space with well-defined parity by observing the collapse of a coherent state onto even or odd cat states. The measurement is fast compared with the cavity lifetime, has a high single-shot fidelity and has a 99.8 per cent probability per single measurement of leaving the parity unchanged. In combination with the deterministic encoding of quantum information in cat states realized earlier, the quantum non-demolition parity tracking that we demonstrate represents an important step towards implementing an active system that extends the lifetime of a quantum bit.%要使量子计算机能够实用,它们就需要采用纠错协议。这涉及到在不扰动量子态的情况下对其进行监测,通常通过与其他量子位的纠缠实施。Luyan Sun等人发现,他们能够对微波腔内的超导量子位中的单一量子跳跃进行追踪。这些测定值被作为一个附属量子位中的奇偶校验信息(该信息反映系统中是否有奇数个或偶数个的微波光子)加以投射。这种奇偶校验信息可被用于高效纠错。该方法解决了对错误症状进行快速和重复监测这样一个此前尚未解决的问题,并为通过超导线路进行容错量子计算铺平了道路。
机译:由于量子信息的脆弱性,实际的量子计算机需要进行量子误差校正。在量子纠错中,信息被冗余地存储在较大的量子状态空间中,并且必须监视一个或多个可观察对象以揭示错误的发生,而不会干扰以未知量子状​​态编码的信息。这样的可观察物,通常是多量子位奇偶校验,必须对应于编码方案中固有的特殊对称性。还必须以量子不可拆卸的方式(投射而不会进一步干扰状态)来执行这些可观测值或错误校验子的测量,并且比发生错误的速度要快。以前,已经在诸如俘获离子,电子,腔量子电动力学,氮空位中心和超导量子位之类的系统中执行了明确定义的能量状态之间的量子跃迁的量子非拆卸测量。然而,到目前为止,尚未实现对错误综合症的快速且重复的监视。在这里,我们通过将这种特性映射到辅助量子位上来跟踪可能的误差综合症(即微波腔的光子数奇偶校验)的量子跃迁,其唯一作用是促进量子态的操纵和测量。对于在谐波振荡器中使用Schroedinger猫态(光的不同相干态的量子叠加)的硬件有效的受保护量子存储器,此数量仅是最近提出的方案所需的错误校正子。通过观察相干态对偶数或奇数猫态的崩溃,我们证明了该测量对状态空间具有良好定义的奇偶性的投影性质。与腔体寿命相比,该测量速度很快,单次保真度很高,并且每次单次测量保持不变的概率为99.8%。与前面实现的猫状态下的量子信息的确定性编码相结合,我们展示的量子非拆卸奇偶性跟踪代表了朝着实现可延长量子比特寿命的有源系统迈出的重要一步。 ,这些就需要采用纠错协议。这涉及到在不扰动量子态的情况下进行进行监测,通常通过与其他量子位的纠缠实施。LuyanSun等人发现,他们能够对微波腔内的超导这些测定值被作为一个附属量子位中的奇偶校验信息(该信息反映系统中是否有奇数个或偶数个的微波光子)投射。这种奇偶校验该方法解决了对错误症状进行快速和重复监测这种一个尚未解决的问题,并为通过超导线路进行容错量子计算铺平了道路。

著录项

  • 来源
    《Nature》 |2014年第7510期|444-448b1|共6页
  • 作者单位

    Departments of Applied Physics and Physics, Yale University, New Haven, Connecticut 06511, USA,Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China;

    Departments of Applied Physics and Physics, Yale University, New Haven, Connecticut 06511, USA;

    Departments of Applied Physics and Physics, Yale University, New Haven, Connecticut 06511, USA;

    Departments of Applied Physics and Physics, Yale University, New Haven, Connecticut 06511, USA;

    Departments of Applied Physics and Physics, Yale University, New Haven, Connecticut 06511, USA,Institut fuer Experimentalphysik, Universitaet Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria and Institut fuer Quantenoptik und Quanteninformation, OEsterreichische Akademie der Wissenschaften, Otto-Hittmair-Platz 1, A-6020 Innsbruck, Austria;

    Departments of Applied Physics and Physics, Yale University, New Haven, Connecticut 06511, USA;

    Departments of Applied Physics and Physics, Yale University, New Haven, Connecticut 06511, USA;

    Departments of Applied Physics and Physics, Yale University, New Haven, Connecticut 06511, USA;

    Departments of Applied Physics and Physics, Yale University, New Haven, Connecticut 06511, USA;

    Departments of Applied Physics and Physics, Yale University, New Haven, Connecticut 06511, USA;

    Departments of Applied Physics and Physics, Yale University, New Haven, Connecticut 06511, USA;

    Departments of Applied Physics and Physics, Yale University, New Haven, Connecticut 06511, USA,INRIA Paris-Rocquencourt, Domaine de Voluceau, BP 105,78153 Le Chesnay Cedex, France;

    Departments of Applied Physics and Physics, Yale University, New Haven, Connecticut 06511, USA;

    Departments of Applied Physics and Physics, Yale University, New Haven, Connecticut 06511, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 02:53:06

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号