首页> 外文期刊>Nature >Ultrafast X-ray probing of water structure below the homogeneous ice nucleation temperature
【24h】

Ultrafast X-ray probing of water structure below the homogeneous ice nucleation temperature

机译:均匀冰核化温度以下水结构的超快X射线探测

获取原文
获取原文并翻译 | 示例
           

摘要

Water has a number of anomalous physical properties, and some of these become drastically enhanced on supercooling below the freezing point. Particular interest has focused on thermodynamic response functions that can be described using a normal component and an anomalous component that seems to diverge at about 228 kelvin (refs 1-3). This has prompted debate about conflicting theories that aim to explain many of the anomalous thermodynamic properties of water. One popular theory attributes the divergence to a phase transition between two forms of liquid water occurring in the 'no man's land' that lies below the homogeneous ice nucleation temperature (T_H) at approximately 232 kelvin and above about 160 kelvin, and where rapid ice crystallization has prevented any measurements of the bulk liquid phase. In fact, the reliable determination of the structure of liquid water typically requires temperatures above about 250 kelvin. Water crystallization has been inhibited by using nanoconfinement, nanodroplets and association with biomolecules to give liquid samples at temperatures below T_H, but such measurements rely on nanoscopic volumes of water where the interaction with the confining surfaces makes the relevance to bulk water unclear. Here we demonstrate that femtosecond X-ray laser pulses can be used to probe the structure of liquid water in micrometre-sized droplets that have been evaporatively cooled below T_H. We find experimental evidence for the existence of metastable bulk liquid water down to temperatures of 227_(-1)~(+2) kelvin in the previously largely unexplored no man's land. We observe a continuous and accelerating increase in structural ordering on supercooling to approximately 229 kelvin, where the number of droplets containing ice crystals increases rapidly. But a few droplets remain liquid for about a millisecond even at this temperature. The hope now is that these observations and our detailed structural data will help identify those theories that best describe and explain the behaviour of water.
机译:水具有许多异常的物理性质,其中一些会在低于冰点的过冷状态下急剧增强。特别关注的是热力学响应函数,该函数可以使用正常成分和异常成分来描述,该成分似乎在约228开尔文处发散(参考文献1-3)。这引发了关于相互矛盾的理论的辩论,这些理论旨在解释水的许多异常热力学性质。一种流行的理论将这种差异归因于在“无人区”中发生的两种液态水之间的相变,该液态水位于均质成核温度(T_H)以下,约为232开尔文,高于约160开尔文,并且冰会快速结晶阻止了对整体液相的任何测量。实际上,可靠地确定液态水的结构通常需要高于约250开尔文的温度。通过使用纳米约束,纳米液滴以及与生物分子的结合可以在低于T_H的温度下提供液体样品,从而抑制了水的结晶,但是这种测量依赖于纳米级的水体积,其中与约束表面的相互作用使得与大量水的相关性不清楚。在这里,我们证明了飞秒X射线激光脉冲可用于探测已蒸发冷却至T_H以下的微米级液滴中的液态水结构。我们找到了实验证据,证明在以前未经人为开发的大片土地上,存在亚稳态的散装液态水存在,温度低至227 _(-1)〜(+2)开尔文。我们观察到,过冷至大约229开尔文时,结构顺序不断且加速地增加,其中包含冰晶的液滴数量迅速增加。但是即使在此温度下,仍有几滴液滴保持液态约一毫秒。现在的希望是,这些观察结果和我们详细的结构数据将有助于确定那些最能描述和解释水的行为的理论。

著录项

  • 来源
    《Nature》 |2014年第7505期|381-384|共4页
  • 作者单位

    SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA,Department of Physics, AlbaNova University Center, Stockholm University, S-106 91 Stockholm, Sweden;

    Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, PO Box 20450, Stanford, California 94309, USA;

    SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA,Department of Chemistry, Stanford University, Stanford, California 94305, USA;

    PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA;

    PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA;

    Department of Physics, AlbaNova University Center, Stockholm University, S-106 91 Stockholm, Sweden;

    PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA;

    Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, PO Box 20450, Stanford, California 94309, USA;

    PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA;

    PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA;

    Center for Free-Electron Laser Science, DESY, Notkestrasse 85,22607 Hamburg, Germany,Linac Coherent Light Source, SLAC National Accelerator Laboratory, PO Box 20450, Stanford, California 94309, USA;

    SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA,Institute for Methods and Instrumentation in Synchrotron Radiation Research, Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Wilhelm-Conrad-Roentgen Campus, Albert-Einstein-Strasse 15,12489 Berlin, Germany;

    SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA,Department of Chemistry, Stanford University, Stanford, California 94305, USA;

    Center for Free-Electron Laser Science, DESY, Notkestrasse 85,22607 Hamburg, Germany;

    Center for Free-Electron Laser Science, DESY, Notkestrasse 85,22607 Hamburg, Germany;

    Department of Physics, AlbaNova University Center, Stockholm University, S-106 91 Stockholm, Sweden;

    Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, PO Box 20450, Stanford, California 94309, USA;

    Linac Coherent Light Source, SLAC National Accelerator Laboratory, PO Box 20450, Stanford, California 94309, USA;

    Linac Coherent Light Source, SLAC National Accelerator Laboratory, PO Box 20450, Stanford, California 94309, USA;

    Mineral Physics Institute, Stony Brook University, Stony Brook, New York, New York 11794-2100, USA;

    Linac Coherent Light Source, SLAC National Accelerator Laboratory, PO Box 20450, Stanford, California 94309, USA;

    Linac Coherent Light Source, SLAC National Accelerator Laboratory, PO Box 20450, Stanford, California 94309, USA;

    Linac Coherent Light Source, SLAC National Accelerator Laboratory, PO Box 20450, Stanford, California 94309, USA;

    Linac Coherent Light Source, SLAC National Accelerator Laboratory, PO Box 20450, Stanford, California 94309, USA;

    Department of Physics, AlbaNova University Center, Stockholm University, S-106 91 Stockholm, Sweden;

    PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA;

    SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA,Department of Physics, AlbaNova University Center, Stockholm University, S-106 91 Stockholm, Sweden,Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, PO Box 20450, Stanford, California 94309, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号