首页> 外文期刊>Nature >CDA directs metabolism of epigenetic nucleosides revealing a therapeutic window in cancer
【24h】

CDA directs metabolism of epigenetic nucleosides revealing a therapeutic window in cancer

机译:CDA指导表观遗传核苷的代谢,揭示癌症的治疗窗口

获取原文
获取原文并翻译 | 示例
           

摘要

Cells require nucleotides to support DNA replication and repair damaged DNA. In addition to de novo synthesis, cells recycle nucleotides from the DNA of dying cells or from cellular material ingested through the diet. Salvaged nucleosides come with the complication that they can contain epigenetic modifications. Because epigenetic inheritance of DNA methylation mainly relies on copying of the modification pattern from parental strands(1-3), random incorporation of pre-modified bases during replication could have profound implications for epigenome fidelity and yield adverse cellular phenotypes. Although the salvage mechanism of 5-methyl-2'deoxycytidine (5mdC) has been investigated before(4-6), it remains unknown how cells deal with the recently identified oxidized forms of 5mdC: 5-hydroxymethyl-2'deoxycytidine (5hmdC), 5-formy-2'deoxycytidine (5fdC) and 5-carboxyl-2'deoxycytidine (5cadC)(7-10). Here we show that enzymes of the nucleotide salvage pathway display substrate selectivity, effectively protecting newly synthesized DNA from the incorporation of epigenetically modified forms of cytosine. Thus, cell lines and animals can tolerate high doses of these modified cytidines without any deleterious effects on physiology. Notably, by screening cancer cell lines for growth defects after exposure to 5hmdC, we unexpectedly identify a subset of cell lines in which 5hmdC or 5fdC administration leads to cell lethality. Using genomic approaches, we show that the susceptible cell lines overexpress cytidine deaminase (CDA). CDA converts 5hmdC and 5fdC into variants of uridine that are incorporated into DNA, resulting in accumulation of DNA damage, and ultimately, cell death. Our observations extend current knowledge of the nucleotide salvage pathway by revealing the metabolism of oxidized epigenetic bases, and suggest a new therapeutic option for cancers, such as pancreatic cancer, that have CDA overexpression and are resistant to treatment with other cytidine analogues(11).
机译:细胞需要核苷酸来支持DNA复制并修复受损的DNA。除从头合成外,细胞还从垂死细胞的DNA或饮食中摄取的细胞物质中回收核苷酸。挽救的核苷的并发症是它们可能含有表观遗传修饰。由于DNA甲基化的表观遗传主要依赖于亲本链的修饰模式的复制(1-3),因此复制过程中预先修饰的碱基的随机掺入可能对表观基因组保真度产生深远影响,并产生不利的细胞表型。尽管之前已经研究了5-甲基-2'脱氧胞苷(5mdC)的挽救机制,但仍不清楚细胞如何处理最近鉴定出的5mdC氧化形式:5-羟甲基-2'脱氧胞苷(5hmdC) ,5-甲-2'脱氧胞苷(5fdC)和5-羧基-2'脱氧胞苷(5cadC)(7-10)。在这里,我们显示核苷酸挽救途径的酶显示底物选择性,有效保护新合成的DNA免受表观修饰形式的胞嘧啶的掺入。因此,细胞系和动物可以耐受高剂量的这些修饰的胞苷,而不会对生理产生任何有害影响。值得注意的是,通过在暴露于5hmdC后筛选癌细胞系中生长缺陷的方法,我们意外地确定了5hmdC或5fdC给药可导致细胞致死性的细胞系子集。使用基因组方法,我们显示了易感细胞系过表达胞苷脱氨酶(CDA)。 CDA将5hmdC和5fdC转化为尿苷的变体,并掺入DNA中,导致DNA损伤积累,最终导致细胞死亡。我们的观察通过揭示氧化表观遗传碱基的代谢,扩展了核苷酸拯救途径的现有知识,并为患有CDA过表达且对其他胞苷类似物具有抗药性的癌症(例如胰腺癌)提出了新的治疗选择(11)。

著录项

  • 来源
    《Nature》 |2015年第7563期|114-118|共5页
  • 作者单位

    Univ Oxford, Nuffield Dept Med, Ludwig Canc Res, Oxford OX3 7DQ, England;

    Univ Oxford, Nuffield Dept Med, Target Discovery Inst, Oxford OX3 7FZ, England;

    Univ Oxford, Nuffield Dept Med, Target Discovery Inst, Oxford OX3 7FZ, England;

    Univ Oxford, Nuffield Dept Med, Target Discovery Inst, Oxford OX3 7FZ, England|Univ Oxford, Nuffield Dept Med, Struct Genom Consortium, Oxford OX3 7DQ, England;

    Univ London Imperial Coll Sci Technol & Med, Ctr Pathol, London W2 1NY, England;

    Univ Oxford, Nuffield Dept Med, Target Discovery Inst, Oxford OX3 7FZ, England;

    Univ Oxford, Nuffield Dept Med, Ludwig Canc Res, Oxford OX3 7DQ, England;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号