首页> 外文期刊>Nature >Quantum-dot-in-perovskite solids
【24h】

Quantum-dot-in-perovskite solids

机译:量子点钙钛矿固体

获取原文
获取原文并翻译 | 示例
       

摘要

Heteroepitaxy-atomically aligned growth of a crystalline film atop a different crystalline substrate-is the basis of electrically driven lasers, multijunction solar cells, and blue-light-emitting diodes(1-5). Crystalline coherence is preserved even when atomic identity is modulated, a fact that is the critical enabler of quantum wells, wires, and dots(6-10). The interfacial quality achieved as a result of hetero-epitaxial growth allows new combinations of materials with complementary properties, which enables the design and realization of functionalities that are not available in the single-phase constituents. Here we show that organohalide perovskites and preformed colloidal quantum dots, combined in the solution phase, produce epitaxially aligned 'dots-in-a-matrix' crystals. Using transmission electron microscopy and electron diffraction, we reveal heterocrystals as large as about 60 nanometres and containing at least 20 mutually aligned dots that inherit the crystalline orientation of the perovskite matrix. The heterocrystals exhibit remarkable optoelectronic properties that are traceable to their atom-scale crystalline coherence: photoelectrons and holes generated in the larger-bandgap perovskites are transferred with 80% efficiency to become excitons in the quantum dot nanocrystals, which exploit the excellent photocarrier diffusion of perovskites to produce bright-light emission from infrared-bandgap quantum-tuned materials. By combining the electrical transport properties of the perovskite matrix with the high radiative efficiency of the quantum dots, we engineer a new platform to advance solution-processed infrared optoelectronics.
机译:异质外层原子排列在不同晶体衬底上的晶体膜生长是电动激光器,多结太阳能电池和蓝光发光二极管的基础(1-5)。即使调制原子同一性,也能保持晶体相干性,这一事实是量子阱,导线和点的关键推动因素(6-10)。由于异质外延生长而获得的界面质量允许具有互补特性的材料进行新的组合,从而可以设计和实现单相成分中不存在的功能。在这里,我们显示有机卤化物钙钛矿和预先形成的胶体量子点在溶液相中结合,可产生外延排列的“矩阵中的点”晶体。使用透射电子显微镜和电子衍射,我们发现了大约60纳米的杂晶,其中包含至少20个相互排列的点,这些点继承了钙钛矿基质的晶体取向。杂晶具有卓越的光电特性,可追溯到其原子尺度的晶体相干性:较大带隙钙钛矿中产生的光电子和空穴以80%的效率转移,成为量子点纳米晶体中的激子,从而利用了钙钛矿的出色光子扩散能力。以红外带隙量子调谐材料产生亮光。通过将钙钛矿基质的电传输性质与量子点的高辐射效率相结合,我们设计了一个新的平台来推进溶液处理的红外光电。

著录项

  • 来源
    《Nature》 |2015年第7560期|324-328|共5页
  • 作者单位

    Univ Toronto, Dept Elect & Comp Engn, Toronto, ON M5S 1A4, Canada;

    Univ Toronto, Dept Elect & Comp Engn, Toronto, ON M5S 1A4, Canada;

    Univ Toronto, Dept Elect & Comp Engn, Toronto, ON M5S 1A4, Canada;

    Univ Toronto, Dept Elect & Comp Engn, Toronto, ON M5S 1A4, Canada;

    Univ Toronto, Dept Elect & Comp Engn, Toronto, ON M5S 1A4, Canada;

    Univ Toronto, Dept Elect & Comp Engn, Toronto, ON M5S 1A4, Canada;

    Univ Toronto, Dept Elect & Comp Engn, Toronto, ON M5S 1A4, Canada;

    Univ Toronto, Dept Elect & Comp Engn, Toronto, ON M5S 1A4, Canada;

    Univ Toronto, Dept Elect & Comp Engn, Toronto, ON M5S 1A4, Canada;

    Univ Toronto, Dept Elect & Comp Engn, Toronto, ON M5S 1A4, Canada;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 02:52:39

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号