首页> 外文期刊>Nature >Gate-tunable frequency combs in graphene-nitride microresonators
【24h】

Gate-tunable frequency combs in graphene-nitride microresonators

机译:石墨烯-氮化物微谐振器中的门可调频率梳

获取原文
获取原文并翻译 | 示例
       

摘要

Optical frequency combs, which emit pulses of light at discrete, equally spaced frequencies, are cornerstones of modern-day frequency metrology, precision spectroscopy, astronomical observations, ultrafast optics and quantum information(1-7). Chip scale frequency combs, based on the Kerr and Raman nonlinearities in monolithic microresonators with ultrahigh quality factors(8-10), have recently led to progress in optical clockwork and observations of temporal cavity solitons(11-14). But the chromatic dispersion within a laser cavity, which determines the comb formation(15-16), is usually difficult to tune with an electric field, whether in microcavities or fibre cavities. Such electrically dynamic control could bridge optical frequency combs and optoelectronics, enabling diverse comb outputs in one resonator with fast and convenient tunability. Arising from its exceptional Fermi-Dirac tunability and ultrafast carrier mobility(17-19), graphene has a complex optical dispersion determined by its optical conductivity, which can be tuned through a gate voltage(20,21). This has brought about optoelectronic advances such as modulators(22,23), photodetectors' and controllable plasmonics(25,26). Here we demonstrate the gated intracavity tunability of graphene-based optical frequency combs, by coupling the gate-tunable optical conductivity to a silicon nitride photonic microresonator, thus modulating its second-and higher-order chromatic dispersions by altering the Fermi level. Preserving cavity quality factors up to 10(6) in the graphene-based comb, we implement a dual-layer ion gel-gated transistor to tune the Fermi level of graphene across the range 0.45-0.65 electronvolts, under single-volt-level control. We use this to produce charge-tunable primary comb lines from 2.3 terahertz to 7.2 terahertz, coherent Kerr frequency combs, controllable Cherenkov radiation and controllable soliton states, all in a single microcavity. We further demonstrate voltage-tunable transitions from periodic soliton crystals to crystals with defects, mapped by our ultrafast second-harmonic optical autocorrelation. This heterogeneous graphene microcavity, which combines single atomic-layer nanoscience and ultrafast optoelectronics, will help to improve our understanding of dynamical frequency combs and ultrafast optics.
机译:光学频率梳以离散,等间隔的频率发射光脉冲,是现代频率计量学,精密光谱学,天文观测,超快光学和量子信息的基础(1-7)。基于具有超高品质因数的单片微谐振器中Kerr和Raman非线性的芯片级频率梳(8-10)近来已导致光学发条和时空孤子观测的发展(11-14)。但是激光腔内的色散决定了梳子的形成(15-16),无论是在微腔还是光纤腔中,通常都难以通过电场来调节。这种电动态控制可以桥接光学频率梳和光电器件,从而在一个谐振器中以快速便捷的可调性实现多种梳状输出。石墨烯具有非凡的Fermi-Dirac可调性和超快的载流子迁移率(17-19),因此其光导率决定了其复杂的光学色散,可以通过栅极电压对其进行调谐(20,21)。这带来了光电方面的进步,例如调制器(22,23),光电探测器和可控等离激元(25,26)。在这里,我们通过将可栅极调节的光导率耦合到氮化硅光子微谐振器,从而通过改变费米能级来调节其二阶和更高阶色散,来展示基于石墨烯的光学频率梳的栅极内腔可调谐性。在基于石墨烯的梳子中保留高达10(6)的腔质量因数,我们实现了双层离子凝胶门控晶体管,以在单伏电平控制下在0.45-0.65电子伏特范围内调节石墨烯的费米能级。我们使用它在单个微腔中产生从2.3太赫兹到7.2太赫兹的电荷可调初级梳状线,相干Kerr频率梳,可控Cherenkov辐射和可控孤子态。我们进一步证明了通过我们的超快二次谐波光学自相关映射从周期孤子晶体到具有缺陷的晶体的电压可调过渡。这种将单原子层纳米科学与超快光电子学相结合的异质石墨烯微腔,将有助于增进我们对动态频率梳和超快光学的理解。

著录项

  • 来源
    《Nature》 |2018年第7710期|410-414|共5页
  • 作者单位

    Univ Calif Los Angeles, Fang Lu Mesoscop Opt & Quantum Elect Lab, Los Angeles, CA 90095 USA;

    Univ Calif Los Angeles, Fang Lu Mesoscop Opt & Quantum Elect Lab, Los Angeles, CA 90095 USA;

    Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90024 USA;

    Univ Calif Los Angeles, Fang Lu Mesoscop Opt & Quantum Elect Lab, Los Angeles, CA 90095 USA;

    Univ Calif Los Angeles, Fang Lu Mesoscop Opt & Quantum Elect Lab, Los Angeles, CA 90095 USA;

    Univ Calif Los Angeles, Fang Lu Mesoscop Opt & Quantum Elect Lab, Los Angeles, CA 90095 USA;

    Univ Calif Los Angeles, Fang Lu Mesoscop Opt & Quantum Elect Lab, Los Angeles, CA 90095 USA;

    Inst Microelect, Singapore, Singapore;

    Inst Microelect, Singapore, Singapore;

    Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90024 USA;

    Univ Elect Sci & Technol China, Educ Minist China, Key Lab Opt Fiber Sensing & Commun, Chengdu, Sichuan, Peoples R China;

    Univ Calif Los Angeles, Dept Chem & Biochem, 405 Hilgard Ave, Los Angeles, CA 90024 USA;

    Univ Calif Los Angeles, Fang Lu Mesoscop Opt & Quantum Elect Lab, Los Angeles, CA 90095 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 02:51:32

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号