首页> 外文期刊>Nature >Experimentally generated randomness certified by the impossibility of superluminal signals
【24h】

Experimentally generated randomness certified by the impossibility of superluminal signals

机译:实验产生的随机性由超光信号的不可能证明

获取原文
获取原文并翻译 | 示例
       

摘要

From dice to modern electronic circuits, there have been many attempts to build better devices to generate random numbers. Randomness is fundamental to security and cryptographic systems and to safeguarding privacy. A key challenge with random-number generators is that it is hard to ensure that their outputs are unpredictable(1-3). For a random-number generator based on a physical process, such as a noisy classical system or an elementary quantum measurement, a detailed model that describes the underlying physics is necessary to assert unpredictability. Imperfections in the model compromise the integrity of the device. However, it is possible to exploit the phenomenon of quantum non-locality with a loophole-free Bell test to build a random-number generator that can produce output that is unpredictable to any adversary that is limited only by general physical principles, such as special relativity(1-11). With recent technological developments, it is now possible to carry out such a loophole-free Bell test(12-14,22). Here we present certified randomness obtained from a photonic Bell experiment and extract 1,024 random bits that are uniformly distributed to within 10(-12). These random bits could not have been predicted according to any physical theory that prohibits faster-than-light (superluminal) signalling and that allows independent measurement choices. To certify and quantify the randomness, we describe a protocol that is optimized for devices that are characterized by a low per-trial violation of Bell inequalities. Future random-number generators based on loophole-free Bell tests may have a role in increasing the security and trust of our cryptographic systems and infrastructure.
机译:从骰子到现代电子电路,已经进行了许多尝试来构建更好的设备以生成随机数。随机性对于安全性和加密系统以及保护隐私至关重要。随机数生成器的主要挑战是难以确保其输出不可预测(1-3)。对于基于物理过程(例如嘈杂的经典系统或基本量子测量)的随机数生成器,描述基本物理原理的详细模型对于断言不可预测性是必要的。模型中的缺陷会损害设备的完整性。但是,可以通过无漏洞的贝尔测试来利用量子非局域现象来构建随机数生成器,该生成器可以产生对于任何仅受一般物理原理(例如特殊原理)限制的对手都无法预测的输出相对论(1-11)。随着最新技术的发展,现在有可能进行这种无漏洞的贝尔测试(12-14,22)。在这里,我们介绍从光子贝尔实验获得的认证随机性,并提取1,024个随机位,这些位均匀分布在10(-12)内。不能根据任何物理理论来预测这些随机位,这些物理理论禁止光速(超腔)信号传输,并允许独立的测量选择。为了证明和量化随机性,我们描述了一种针对设备的优化协议,该设备的特征是具有较低的按试验次数违反Bell不等式的特征。未来基于无漏洞贝尔测试的随机数生成器可能会在提高我们的密码系统和基础架构的安全性和信任度方面发挥作用。

著录项

  • 来源
    《Nature》 |2018年第7700期|223-226|共4页
  • 作者单位

    NIST, Boulder, CO 80305 USA;

    NIST, Boulder, CO 80305 USA;

    NIST, Boulder, CO 80305 USA;

    NIST, Boulder, CO 80305 USA;

    NIST, Gaithersburg, MD 20899 USA;

    NIST, Gaithersburg, MD 20899 USA;

    Muhlenberg Coll, Allentown, PA 18104 USA;

    NIST, Gaithersburg, MD 20899 USA;

    Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA;

    NIST, Boulder, CO 80305 USA;

    NIST, Boulder, CO 80305 USA;

    NIST, Boulder, CO 80305 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 02:51:30

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号