...
首页> 外文期刊>Nature >Correlated insulator behaviour at half-filling in magic-angle graphene superlattices
【24h】

Correlated insulator behaviour at half-filling in magic-angle graphene superlattices

机译:幻角石墨烯超晶格半填充时的相关绝缘子行为

获取原文
获取原文并翻译 | 示例

摘要

A van der Waals heterostructure is a type of metamaterial that consists of vertically stacked two-dimensional building blocks held together by the van der Waals forces between the layers. This design means that the properties of van der Waals heterostructures can be engineered precisely, even more so than those of two-dimensional materials(1). One such property is the 'twist' angle between different layers in the heterostructure. This angle has a crucial role in the electronic properties of van der Waals heterostructures, but does not have a direct analogue in other types of heterostructure, such as semiconductors grown using molecular beam epitaxy. For small twist angles, the moire pattern that is produced by the lattice misorientation between the two-dimensional layers creates long-range modulation of the stacking order. So far, studies of the effects of the twist angle in van der Waals heterostructures have concentrated mostly on heterostructures consisting of monolayer graphene on top of hexagonal boron nitride, which exhibit relatively weak interlayer interaction owing to the large bandgap in hexagonal boron nitride(2-5). Here we study a heterostructure consisting of bilayer graphene, in which the two graphene layers are twisted relative to each other by a certain angle. We show experimentally that, as predicted theoretically(6), when this angle is close to the 'magic' angle the electronic band structure near zero Fermi energy becomes flat, owing to strong interlayer coupling. These flat bands exhibit insulating states at half-filling, which are not expected in the absence of correlations between electrons. We show that these correlated states at half-filling are consistent with Mott-like insulator states, which can arise from electrons being localized in the superlattice that is induced by the moire pattern. These properties of magic-angle-twisted bilayer graphene heterostructures suggest that these materials could be used to study other exotic many-body quantum phases in two dimensions in the absence of a magnetic field. The accessibility of the flat bands through electrical tunability and the bandwidth tunability through the twist angle could pave the way towards more exotic correlated systems, such as unconventional superconductors and quantum spin liquids.
机译:范德华异质结构是一种超材料,由垂直堆叠的二维构建块组成,这些二维构建块通过层之间的范德华力保持在一起。这种设计意味着范德华异质结构的性质可以被精确地设计,甚至比二维材料的性质更精确(1)。一种这样的特性是异质结构中不同层之间的“扭转”角。这个角度在范德华异质结构的电子特性中起着至关重要的作用,但在其他类型的异质结构(例如使用分子束外延生长的半导体)中却没有直接的类似物。对于较小的扭曲角,由二维层之间的晶格失取向产生的莫尔条纹会产生堆叠顺序的远距离调制。到目前为止,扭转角对范德华异质结构影响的研究主要集中在六方氮化硼顶部由单层石墨烯组成的异质结构,由于六方氮化硼具有较大的带隙,层间相互作用较弱(2- 5)。在这里,我们研究了由双层石墨烯组成的异质结构,其中两个石墨烯层相对于彼此扭曲了一定角度。我们通过实验证明,如理论上所预测的(6),当该角度接近``魔术''角度时,由于强的层间耦合,接近零费米能量的电子能带结构变得平坦。这些平坦的带在半填充时表现出绝缘态,这在电子之间不存在相关性的情况下是无法预期的。我们表明,在半填充状态下,这些相关状态与Mott状绝缘子状态相一致,这可能是由于莫尔条纹引起的超晶格中的电子局部化所致。魔角扭曲的双层石墨烯异质结构的这些性质表明,这些材料可用于在没有磁场的情况下研究二维的其他奇异多体量子相。通过电可调谐性获得平坦带的可及性,通过扭转角实现带宽可调谐性可为更奇特的相关系统铺平道路,例如非常规的超导体和量子自旋液体。

著录项

  • 来源
    《Nature 》 |2018年第7699期| 80-84| 共5页
  • 作者单位

    MIT, Dept Phys, Cambridge, MA 02139 USA;

    MIT, Dept Phys, Cambridge, MA 02139 USA;

    MIT, Dept Phys, Cambridge, MA 02139 USA;

    Harvard Univ, Dept Phys, Cambridge, MA 02138 USA;

    MIT, Dept Phys, Cambridge, MA 02139 USA;

    MIT, Dept Phys, Cambridge, MA 02139 USA;

    Harvard Univ, Dept Phys, Cambridge, MA 02138 USA;

    Natl Inst Mat Sci, Namiki 1-1, Tsukuba, Ibaraki 3050044, Japan;

    Natl Inst Mat Sci, Namiki 1-1, Tsukuba, Ibaraki 3050044, Japan;

    Harvard Univ, Dept Phys, Cambridge, MA 02138 USA;

    MIT, Dept Phys, Cambridge, MA 02139 USA;

    MIT, Dept Phys, Cambridge, MA 02139 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号