...
首页> 外文期刊>Nature >Molecular nucleation mechanisms and control strategies for crystal polymorph selection
【24h】

Molecular nucleation mechanisms and control strategies for crystal polymorph selection

机译:晶体多晶型物选择的分子成核机理和控制策略

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The formation of condensed (compacted) protein phases is associated with a wide range of human disorders, such as eye cataracts(1), amyotrophic lateral sclerosis(2), sickle cell anaemia(3) and Alzheimer's disease(4). However, condensed protein phases have their uses: as crystals, they are harnessed by structural biologists to elucidate protein structures(5), or are used as delivery vehicles for pharmaceutical applications(6). The physiochemical properties of crystals can vary substantially between different forms or structures ('polymorphs') of the same macromolecule, and dictate their usability in a scientific or industrial context. To gain control over an emerging polymorph, one needs a molecular-level understanding of the pathways that lead to the various macroscopic states and of the mechanisms that govern pathway selection. However, it is still not clear how the embryonic seeds of a macromolecular phase are formed, or how these nuclei affect polymorph selection. Here we use time-resolved cryo-transmission electron microscopy to image the nucleation of crystals of the protein glucose isomerase, and to uncover at molecular resolution the nucleation pathways that lead to two crystalline states and one gelled state. We show that polymorph selection takes place at the earliest stages of structure formation and is based on specific building blocks for each space group. Moreover, we demonstrate control over the system by selectively forming desired polymorphs through site-directed mutagenesis, specifically tuning intermolecular bonding or gel seeding. Our results differ from the present picture of protein nucleation(7-12), in that we do not identify a metastable dense liquid as the precursor to the crystalline state. Rather, we observe nucleation events that are driven by oriented attachments between subcritical clusters that already exhibit a degree of crystallinity. These insights suggest ways of controlling macromolecular phase transitions, aiding the development of protein-based drug-delivery systems and macromolecular crystallography.
机译:浓缩(压缩)蛋白相的形成与多种人类疾病相关,例如眼白内障(1),肌萎缩性侧索硬化(2),镰状细胞贫血(3)和阿尔茨海默氏病(4)。然而,浓缩的蛋白质相却有其用途:作为晶体,结构生物学家利用它们来阐明蛋白质的结构(5),或用作药物应用的递送载体(6)。晶体的物理化学性质可以在同一大分子的不同形式或结构(“多晶型物”)之间发生很大变化,并决定了它们在科学或工业环境中的可用性。为了控制新出现的多晶型物,需要对导致各种宏观状态的途径以及控制途径选择的机制进行分子水平的了解。但是,尚不清楚如何形成大分子相的胚种子,或这些核如何影响多晶型物的选择。在这里,我们使用时间分辨的低温透射电子显微镜对蛋白质葡萄糖异构酶的晶体成核进行成像,并以分子分辨率揭示导致两种晶态和一种凝胶态的成核途径。我们表明,多晶型物的选择发生在结构形成的最早阶段,并且是基于每个空间群的特定构件。此外,我们展示了通过定点诱变选择性地形成所需的多晶型物,特别是调节分子间键合或凝胶接种,从而控制了系统。我们的结果与当前蛋白质成核的情况不同(7-12),因为我们没有鉴定出亚稳态的致密液体作为晶态的前体。相反,我们观察到成核事件是由亚临界簇之间已定向结晶的定向附件驱动的。这些见解提出了控制大分子相变的方法,有助于蛋白质基药物传递系统和大分子晶体学的发展。

著录项

  • 来源
    《Nature》 |2018年第7699期|89-94|共6页
  • 作者单位

    Univ Grenoble Alpes, Univ Savoie Mt Blanc, CNRS, IRD,IFSTTAR,ISTerre, F-38000 Grenoble, France;

    Vrije Univ Brussel, Struct Biol Brussels, Pl Laan 2, B-1050 Brussels, Belgium;

    Eindhoven Univ Technol, Lab Mat & Interface Chem, POB 513, NL-5600 MB Eindhoven, Netherlands;

    Eindhoven Univ Technol, Lab Mat & Interface Chem, POB 513, NL-5600 MB Eindhoven, Netherlands;

    Eindhoven Univ Technol, Lab Mat & Interface Chem, POB 513, NL-5600 MB Eindhoven, Netherlands;

    CIC bioGUNE, Struct Biol Unit, Parque Tecnol Bizkaia, Derio 48160, Bizkaia, Spain;

    Eindhoven Univ Technol, Lab Mat & Interface Chem, POB 513, NL-5600 MB Eindhoven, Netherlands;

    Vrije Univ Brussel, Struct Biol Brussels, Pl Laan 2, B-1050 Brussels, Belgium;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号