首页> 外文期刊>Nature >Photonic topological boundary pumping as a probe of 4D quantum Hall physics
【24h】

Photonic topological boundary pumping as a probe of 4D quantum Hall physics

机译:光子拓扑边界泵浦作为4D量子霍尔物理的探究

获取原文
获取原文并翻译 | 示例
       

摘要

When a two-dimensional (2D) electron gas is placed in a perpendicular magnetic field, its in-plane transverse conductance becomes quantized; this is known as the quantum Hall effect(1). It arises from the non-trivial topology of the electronic band structure of the system, where an integer topological invariant (the first Chern number) leads to quantized Hall conductance. It has been shown theoretically that the quantum Hall effect can be generalized to four spatial dimensions(2-4), but so far this has not been realized experimentally because experimental systems are limited to three spatial dimensions. Here we use tunable 2D arrays of photonic waveguides to realize a dynamically generated four-dimensional (4D) quantum Hall system experimentally. The inter-waveguide separation in the array is constructed in such a way that the propagation of light through the device samples over momenta in two additional synthetic dimensions, thus realizing a 2D topological pump(5-8). As a result, the band structure has 4D topological invariants (known as second Chern numbers) that support a quantized bulk Hall response with 4D symmetry(7). In a finite-sized system, the 4D topological bulk response is carried by localized edge modes that cross the sample when the synthetic momenta are modulated. We observe this crossing directly through photon pumping of our system from edge to edge and corner to corner. These crossings are equivalent to charge pumping across a 4D system from one three-dimensional hypersurface to the spatially opposite one and from one 2D hyperedge to another. Our results provide a platform for the study of higher-dimensional topological physics.
机译:当将二维(2D)电子气置于垂直磁场中时,其平面内横向电导将被量化。这就是所谓的量子霍尔效应(1)。它来自系统电子带结构的非平凡拓扑,其中整数拓扑不变量(第一个Chern数)导致量化的霍尔电导。从理论上讲,量子霍尔效应可以推广到四个空间维度(2-4),但是到目前为止,由于实验系统限于三个空间维度,因此尚未通过实验实现。在这里,我们使用光子波导的可调2D阵列,以实验方式实现动态生成的4维(4D)量子霍尔系统。阵列中的波导间分隔以这样的方式构造,使得光通过装置样本的光传播沿动量以两个附加的合成维数传播,从而实现了二维拓扑泵(5-8)。结果,能带结构具有4D拓扑不变量(称为第二Chern数),它们支持具有4D对称性的量化体霍尔响应(7)。在有限大小的系统中,当调制合成动量时,4D拓扑体响应由跨样品的局部边缘模式承载。我们通过系统的光子泵浦从边缘到边缘以及从角落到角落直接观察到这种交叉。这些交叉相当于从一个三维超曲面到一个空间相对的曲面,再从一个2D超曲面到另一个,跨越4D系统进行电荷泵浦。我们的结果为研究高维拓扑物理学提供了一个平台。

著录项

  • 来源
    《Nature》 |2018年第7686期|59-62|共4页
  • 作者单位

    ETH, Inst Theoret Phys, CH-8093 Zurich, Switzerland;

    Univ Pittsburgh, Dept Elect & Comp Engn, Pittsburgh, PA 15261 USA;

    Penn State Univ, Dept Phys, 104 Davey Lab, University Pk, PA 16802 USA;

    Univ Pittsburgh, Dept Elect & Comp Engn, Pittsburgh, PA 15261 USA;

    Univ Pittsburgh, Dept Elect & Comp Engn, Pittsburgh, PA 15261 USA;

    Holon Inst Technol, Dept Phys, IL-5810201 Holon, Israel;

    Penn State Univ, Dept Phys, 104 Davey Lab, University Pk, PA 16802 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 02:51:25

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号