...
首页> 外文期刊>Nature Materials >Large modulation of carrier transport by grain-boundary molecular packing and microstructure in organic thin films
【24h】

Large modulation of carrier transport by grain-boundary molecular packing and microstructure in organic thin films

机译:有机薄膜中晶界分子堆积和微观结构对载流子传输的大调节

获取原文
获取原文并翻译 | 示例

摘要

Solution-processable organic semiconductors are central to developing viable printed electronics, and performance comparable to that of amorphous silicon has been reported for films grown from soluble semiconductors. However, the seemingly desirable formation of large crystalline domains introduces grain boundaries, resulting in substantial device-to-device performance variations. Indeed, for films where the grain-boundary structure is random, a few unfavourable grain boundaries may dominate device performance. Here we isolate the effects of molecular-level structure at grain boundaries by engineering the microstructure of the high-performance n-type perylenediimide semiconductor PDI8-CN_2 and analyse their consequences for charge transport. A combination of advanced X-ray scattering, first-principles computation and transistor characterization applied to PDI8-CN_2 films reveals that grain-boundary orientation modulates carrier mobility by approximately two orders of magnitude. For PDI8-CN_2 we show that the molecular packing motif (that is, herringbone versus slip-stacked) plays a decisive part in grain-boundary-induced transport anisotropy. The results of this study provide important guidelines for designing device-optimized molecular semiconductors.
机译:可溶液处理的有机半导体是开发可行的印刷电子产品的核心,对于从可溶性半导体中生长的薄膜,已经报道了与非晶硅相当的性能。但是,看似理想的大晶畴形成会引入晶界,从而导致器件之间的性能发生实质性变化。实际上,对于晶界结构随机的薄膜,一些不利的晶界可能会主导器件性能。在这里,我们通过设计高性能n型per二酰亚胺半导体PDI8-CN_2的微观结构来隔离晶界上分子水平结构的影响,并分析其对电荷传输的影响。先进的X射线散射,第一性原理计算和应用于PDI8-CN_2薄膜的晶体管特性的结合表明,晶界取向将载流子迁移率调节了大约两个数量级。对于PDI8-CN_2,我们证明了分子堆积模体(即人字形与滑移堆积)在晶界诱导的传输各向异性中起着决定性的作用。这项研究的结果为设计器件优化的分子半导体提供了重要指导。

著录项

  • 来源
    《Nature Materials》 |2009年第12期|952-958|共7页
  • 作者单位

    Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA;

    Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA;

    Palo Alto Research Center (PARC), Palo Alto, California 94304, USA;

    Stanford Synchrotron Radiation Lightsource, Menlo Park, California 94025, USA;

    Department of Applied Physics, Stanford University, Stanford, California 94305, USA;

    Polyera Corporation, Skokie, Illinois 60077, USA;

    Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA;

    Polyera Corporation, Skokie, Illinois 60077, USA Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA;

    Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号