...
首页> 外文期刊>Nature Materials >Electric-field-controlled ferromagnetism in high-Curie-temperature Mn_(0.05)Ge_(0.95) quantum dots
【24h】

Electric-field-controlled ferromagnetism in high-Curie-temperature Mn_(0.05)Ge_(0.95) quantum dots

机译:居里温度Mn_(0.05)Ge_(0.95)量子点中的电场控制铁磁性

获取原文
获取原文并翻译 | 示例

摘要

Electric-field manipulation of ferromagnetism has the potential for developing a new generation of electric devices to resolve the power consumption and variability issues in today's microelectronics industry. Among various dilute magnetic semiconductors (DMSs), group Ⅳ elements such as Si and Ge are the ideal material candidates because of their excellent compatibility with the conventional complementary metal-oxide-semiconductor (MOS) technology. Here we report, for the first time, the successful synthesis of self-assembled dilute magnetic Mn_(0.05)Ge_(0.95) quantum dots with ferromagnetic order above room temperature, and the demonstration of electric-field control of ferromagnetism in MOS ferromagnetic capacitors up to 100 K. We found that by applying electric fields to a MOS gate structure, the ferromagnetism of the channel layer can be effectively modulated through the change of hole concentration inside the quantum dots. Our results are fundamentally important in the understanding and to the realization of high-efficiency Ge-based spin field-effect transistors.
机译:铁磁性的电场操纵具有开发新一代电子设备的潜力,以解决当今微电子行业中的功耗和可变性问题。在各种稀磁半导体(DMS)中,第Ⅳ类元素(如Si和Ge)是理想的候选材料,因为它们与常规的互补金属氧化物半导体(MOS)技术具有出色的兼容性。在这里,我们首次报告成功合成了室温以上具有铁磁序的自组装稀磁性Mn_(0.05)Ge_(0.95)量子点,并成功地演示了MOS铁磁电容器中铁磁的电场控制至100K。我们发现,通过向MOS栅极结构施加电场,可以通过改变量子点内部的空穴浓度来有效地调制沟道层的铁磁性。我们的结果对于理解和实现基于Ge的高效自旋场效应晶体管至关重要。

著录项

  • 来源
    《Nature Materials 》 |2010年第4期| p.337-344| 共8页
  • 作者单位

    Device Research Laboratory, Department of Electrical Engineering, University of California, Los Angeles, California 90095, USA;

    rnMaterials Engineering and Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, Queensland 4072, Australia;

    rnDevice Research Laboratory, Department of Electrical Engineering, University of California, Los Angeles, California 90095, USA;

    rnDevice Research Laboratory, Department of Electrical Engineering, University of California, Los Angeles, California 90095, USA;

    rnDevice Research Laboratory, Department of Electrical Engineering, University of California, Los Angeles, California 90095, USA;

    rnIntel Corporation, Santa Clara, California 95054, USA;

    rnMaterials Engineering and Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, Queensland 4072, Australia;

    rnDevice Research Laboratory, Department of Electrical Engineering, University of California, Los Angeles, California 90095, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号