首页> 外文期刊>Naturwissenschaften >Evolution and function of auditory systems in insects
【24h】

Evolution and function of auditory systems in insects

机译:昆虫听觉系统的进化和功能

获取原文
获取原文并翻译 | 示例
       

摘要

While the sensing of substrate vibrations is common among arthropods, the reception of sound pressure waves is an adaptation restricted to insects, which has arisen independently several times in different orders. Wherever studied, tympanal organs were shown to derive from chordotonal precursors, which were modified such that mechanosensitive scolopidia became attached to thin cuticular membranes backed by air-filled tracheal cavities (except in lacewings). The behavioural context in which hearing has evolved has strongly determined the design and properties of the auditory system. Hearing organs which have evolved in the context of predator avoidance are highly sensitive, preferentially in a broad range of ultrasound frequencies, which release rapid escape manoeuvres. Hearing in the context of communication does not only require recognition and discrimination of highly specific song patterns but also their localisation. Typically, the spectrum of the conspecific signals matches the best sensitivity of the receiver. Directionality is achieved by means of sophisticated peripheral structures and is further enhanced by neuronal processing. Side-specific gain control typically allows the insect to encode the loudest signal on each side. The filtered information is transmitted to the brain, where the final steps of pattern recognition and localisation occur. The outputs of such filter networks, modulated or gated by further processes (subsumed by the term motivation), trigger command neurones for specific behaviours. Altogether, the many improvements opportunistically evolved at any stage of acoustic information-processing ultimately allow insects to come up with astonishing acoustic performances similar to those achieved by vertebrates.
机译:虽然在节肢动物中常见的是基板振动的感测,但是声压波的接收是对昆虫的一种适应,它以不同的顺序独立出现了几次。无论在哪里进行研究,都表明鼓膜器官源自软骨原体,这些原体经过修饰后使机械敏感性脊柱侧凸附着在由气管腔充填的表皮薄膜上(除wing虫外)。听力在其中演变的行为背景已强烈决定了听觉系统的设计和属性。在避免捕食者的背景下发展的听力器官高度敏感,优先在广泛的超声频率范围内,这会释放快速的逃逸动作。在交流环境中进行聆听不仅需要识别和区分高度特定的歌曲模式,还需要对其定位进行识别。通常,同种信号的频谱与接收器的最佳灵敏度匹配。方向性通过复杂的外围结构实现,并通过神经元处理进一步增强。特定于侧面的增益控制通常允许昆虫对每一侧的最大声音信号进行编码。过滤后的信息被传输到大脑,在那里进行模式识别和定位的最后步骤。这种过滤器网络的输出(由进一步的过程(由术语“动机”归类)进行调制或门控)会触发命令神经元进行特定行为。总而言之,在声学信息处理的任何阶段,机会性地发展的许多改进最终都使昆虫产生了与脊椎动物类似的惊人声学性能。

著录项

  • 来源
    《Naturwissenschaften》 |2001年第4期|159-170|共12页
  • 作者

    A. Stumpner; D. von Helversen;

  • 作者单位

    Institut für Zoologie und Anthropologie Universität Göttingen Berliner Strasse 28 37073 Göttingen Germany;

    Max-Planck-Institut für Verhaltensphysiologie 82319 Seewiesen/Starnberg Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号