...
首页> 外文期刊>Monthly Notices of the Royal Astronomical Society >Cosmic-ray hydrodynamics: Alfvén-wave regulated transport of cosmic rays
【24h】

Cosmic-ray hydrodynamics: Alfvén-wave regulated transport of cosmic rays

机译:宇宙射线水动力:阿尔芬波控制的宇宙射线传输

获取原文
获取原文并翻译 | 示例

摘要

Star formation in galaxies appears to be self-regulated by energetic feedback processes. Among the most promising agents of feedback are cosmic rays (CRs), the relativistic ion population of interstellar and intergalactic plasmas. In these environments, energetic CRs are virtually collisionless and interact via collective phenomena mediated by kinetic-scale plasma waves and large-scale magnetic fields. The enormous separation of kinetic and global astrophysical scales requires a hydrodynamic description. Here, we develop a new macroscopic theory for CR transport in the self-confinement picture, which includes CR diffusion and streaming. The interaction between CRs and electromagnetic fields of Alfvenic turbulence provides the main source of CR scattering, and causes CRs to stream along the magnetic field with the Alfven velocity if resonant waves are sufficiently energetic. However, numerical simulations struggle to capture this effect with current transport formalisms and adopt regularization schemes to ensure numerical stability. We extent the theory by deriving an equation for the CRmomentum density along the mean magnetic field and include a transport equation for the Alfven-wave energy. We account for energy exchange of CRs and Alfven waves via the gyroresonant instability and include other wave damping mechanisms. Using numerical simulations, we demonstrate that our new theory enables stable, self-regulated CR transport. The theory is coupled to magnetohydrodynamics, conserves the total energy and momentum, and correctly recovers previous macroscopic CR transport formalisms in the steady-state flux limit. Because it is free of tunable parameters, it holds the promise to provide predictable simulations of CR feedback in galaxy formation.
机译:星系中的恒星形成似乎是由高能反馈过程自我调节的。宇宙射线(CR)是星际和银河系等离子体的相对论性离子群,是最有希望的反馈媒介。在这些环境中,高能CR实际上是无碰撞的,并通过由动力学规模的等离子波和大规模磁场介导的集体现象相互作用。动力学天体和全局天体尺度的巨大分离需要水动力描述。在这里,我们为自约束图像中的CR传输开发了一种新的宏观理论,其中包括CR扩散和流传输。 CR和Alfvenic湍流的电磁场之间的相互作用提供了CR散射的主要来源,如果共振波具有足够的能量,则会导致CR以Alfven速度沿着磁场流动。但是,数值模拟难以用当前的运输形式主义来捕捉这种影响,并采用正则化方案来确保数值稳定性。我们通过推导沿平均磁场的CR动量密度方程来扩展该理论,并包括Alfven波能量的输运方程。我们通过回旋共振不稳定性来解释CR和Alfven波的能量交换,并包括其他波阻尼机制。使用数值模拟,我们证明了我们的新理论可以实现稳定的,自我调节的CR传输。该理论与磁流体动力学耦合,可以节省总能量和动量,并且可以在稳态磁通极限内正确地恢复以前的宏观CR传输形式。由于它没有可调参数,因此有望在银河系形成中提供可预测的CR反馈模拟。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号