首页> 外文期刊>Molecular BioSystems >Robustness and evolvability in natural chemical resistance: identification of novel systems properties, biochemical mechanisms and regulatory interactions
【24h】

Robustness and evolvability in natural chemical resistance: identification of novel systems properties, biochemical mechanisms and regulatory interactions

机译:天然化学抗性的稳健性和可进化性:新系统特性,生物化学机制和调节相互作用的鉴定

获取原文
获取原文并翻译 | 示例
           

摘要

A vast amount of data on the natural resistance of Saccharomyces cerevisiae to a diverse array of chemicals has been generated over the past decade (chemical genetics). We endeavored to use this data to better characterize the "systems" level properties of this phenomenon. By collating data from over 30 different genome-scale studies on growth of gene deletion mutants in presence of diverse chemicals, we assembled the largest currently available gene-chemical network. We also derived a second gene-gene network that links genes with significantly overlapping chemical-genetic profiles. We analyzed properties of these networks and investigated their significance by overlaying various sources of information, such as presence of TATA boxes in their promoters (which typically correlate with transcriptional noise), association with TFIID or SAGA, and propensity to function as phenotypic capacitors. We further combined these networks with ubiquitin and protein kinase-substrate networks to understand chemical tolerance in the context of major post-translational regulatory processes. Hubs in the gene-chemical network (multidrug resistance genes) are notably enriched for phenotypic capacitors (buffers against phenotypic variation), suggesting the generality of these players in buffering mechanistically unrelated deleterious forces impinging on the cell. More strikingly, analysis of the gene-gene network derived from the gene-chemical network uncovered another set of genes that appear to function in providing chemical tolerance in a cooperative manner. These appear to be enriched in lineage-specific and rapidly diverging members that also show a corresponding tendency for SAGA-dependent regulation, evolutionary divergence and noisy expression patterns. This set represents a previously underappreciated component of the chemical response that enables cells to explore alternative survival strategies. Thus, systems robustness and evolvability are simultaneously active as general forces in tolerating environmental variation. We also recover the actual genes involved in the above-discussed network properties and predict the biochemistry of their products. Certain key components of the ubiquitin system (e.g. Rcyl, Wssl and Ubpl6), peroxisome recycling (e.g. Irs4) and phosphorylation cascades(e.g. NPR1, MCK1 and HOG) are major participants and regulators of chemical resistance. We also show that a major sub-network boosting mitochondrial protein synthesis is important for exploration of alternative survival strategies under chemical stress. Further, we find evidence that cellular exploration of survival strategies under chemical stress and secondary metabolism draw from a common pool of biochemical players (e.g. acetyltransferases and a novel NTN hydrolase).
机译:在过去的十年中,已经获得了关于酿酒酵母对多种化学物质的天然抗性的大量数据(化学遗传学)。我们努力使用此数据来更好地表征此现象的“系统”级属性。通过整理来自30多个不同基因组规模研究的数据,这些研究涉及存在多种化学物质时基因缺失突变体的生长,我们组装了目前最大的基因化学网络。我们还获得了第二个基因-基因网络,该网络将具有明显重叠的化学-遗传特征的基因链接在一起。我们分析了这些网络的特性,并通过覆盖各种信息源来研究了它们的重要性,例如其启动子中存在TATA框(通常与转录噪声相关),与TFIID或SAGA关联以及用作表型电容器的倾向。我们进一步将这些网络与泛素和蛋白激酶-底物网络相结合,以了解主要翻译后调控过程中的化学耐受性。基因化学网络(多药抗性基因)中的集线器显着丰富了表型电容器(表型变异的缓冲液),这表明这些分子具有缓冲作用于细胞的与机械无关的有害力的普遍性。更惊人的是,对源自基因化学网络的基因基因网络的分析发现了另一组基因,这些基因似乎以合作方式提供化学耐受性。这些似乎富含沿袭特异性和快速分化的成员,这些成员也表现出相应的趋势,即依赖SAGA的调节,进化分化和嘈杂的表达模式。这组代表化学反应以前未被重视的组成部分,使细胞能够探索替代的生存策略。因此,系统的鲁棒性和可进化性同时作为耐受环境变化的一般力量而发挥作用。我们还恢复了涉及上述网络特性的实际基因,并预测了其产品的生物化学。泛素系统的某些关键组成部分(例如Rcyl,Wssl和Ubpl6),过氧化物酶体再循环(例如Irs4)和磷酸化级联(例如NPR1,MCK1和HOG)是主要的参与者和化学抗性调节剂。我们还表明,促进线粒体蛋白质合成的主要子网络对于化学胁迫下替代生存策略的探索非常重要。此外,我们发现有证据表明,在化学应激和次级代谢下,细胞对生存策略的探索来自于生化参与者的共同库(例如,乙酰转移酶和新型NTN水解酶)。

著录项

  • 来源
    《Molecular BioSystems》 |2010年第8期|P.1475-1491|共17页
  • 作者单位

    National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894,USA;

    rnNational Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894,USA Center for Cancer Systems Biology, Dana-Farber Cancer Institute,Harvard Medical School, Boston, Massachusetts 02115, USA;

    Joslin Diabetes Center, 1 Joslin Place, Boston, MA 02215, USA;

    rnNational Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894,USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号