...
首页> 外文期刊>Microsystem Technologies >Optimizing the performance of a Coriolis-based angular rate sensor applying an analytical approach
【24h】

Optimizing the performance of a Coriolis-based angular rate sensor applying an analytical approach

机译:应用分析方法优化基于科里奥利角速度传感器的性能

获取原文
获取原文并翻译 | 示例
           

摘要

This paper focuses on the optimization of a novel angular rate sensor element based on the Coriolis force working principle. The device is resonantly excited and consists of two mechanically coupled oscillators representing the drive and the sense unit. In order to minimize energy losses during operation, the device employs a single point suspension to the substrate. This is especially advantageous when choosing an antiphase torsional motion for the sense mode. Furthermore, thermally-induced stress resulting in undesired drift effects of the device is minimized. The excitation frequency of the electrostatic drive unit was chosen to be in the range from 10 to 15 kHz, according to automotive requirements. The optimization process started with a complete parameterization of the sensor geometry, providing the basis for an analytical model. This was set up via the so-called deformation algorithm, applying the Ritz method. Next, the eigenfrequencies and mode shapes of the sensor were calculated analytically and compared with FEM results. The inclusion of the Coriolis force induced response of the sense unit yielded signal values from the differential capacitive pickup. An advanced hill climbing algorithm was used, varying two geometrical parameters simultaneously in such a way that the difference in drive and sense frequencies was kept at a constant value of 200 Hz. Based on this procedure an optimized design was found with an increase in signal level of about 450% as compared to earlier versions (e.g. from 3 to 17 aF/°/s). In a last step, fabrication related perforation holes which are typical for surface micromachined devices were included in the model. For this configuration, a frequency matching step was performed by FEM calculations. Resulting stiffness values were fed into the analytical model yielding a final output signal of the sensor of 16 aF/°/s.
机译:本文重点研究基于科里奥利力工作原理的新型角速率传感器元件的优化。该设备被共振激励,由两个机械耦合的振荡器组成,分别代表驱动器和传感单元。为了使操作期间的能量损失最小化,该设备对基板采用了单点悬挂。当为感测模式选择反相扭转运动时,这是特别有利的。此外,导致装置的不期望的漂移效应的热诱导应力被最小化。根据汽车要求,静电驱动单元的激励频率选择为10至15 kHz。优化过程始于传感器几何形状的完整参数化,为分析模型提供了基础。这是通过使用Ritz方法的所谓变形算法设置的。接下来,分析计算传感器的本征频率和模式形状,并将其与有限元结果进行比较。包含科里奥利力感测单元的响应会产生来自差分电容式拾音器的信号值。使用了先进的爬坡算法,同时改变了两个几何参数,以使驱动频率和感应频率之差保持恒定值200 Hz。基于此程序,发现了一种优化设计,与早期版本相比,信号电平增加了约450%(例如,从3到17 aF /°/ s)。在最后一步中,模型中包括了与制造相关的穿孔,这些穿孔通常是表面微加工设备所特有的。对于此配置,通过FEM计算执行了频率匹配步骤。将得到的刚度值输入到分析模型中,从而得出传感器的最终输出信号为16 aF /°/ s。

著录项

  • 来源
    《Microsystem Technologies》 |2008年第5期|517-525|共9页
  • 作者单位

    Faculty of Natural Sciences and Technology II Chair of Micromechanics Microfluidics/Microactuators Saarland University 66123 Saarbruecken Germany;

    Faculty of Natural Sciences and Technology II Chair of Micromechanics Microfluidics/Microactuators Saarland University 66123 Saarbruecken Germany;

    Faculty of Natural Sciences and Technology II Chair of Micromechanics Microfluidics/Microactuators Saarland University 66123 Saarbruecken Germany;

    Faculty of Natural Sciences and Technology II Chair of Micromechanics Microfluidics/Microactuators Saarland University 66123 Saarbruecken Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号