...
首页> 外文期刊>Microsystem Technologies >Influence of material stiffness and geometrical variations on the electro-thermally driven microactuator performance
【24h】

Influence of material stiffness and geometrical variations on the electro-thermally driven microactuator performance

机译:材料刚度和几何变化对电热驱动微执行器性能的影响

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In order to make robust design of microdevices, it is important to implement a model considering uncertainty analysis. The high cost of experimentation and product development has led to an emphasis on simulated based design to achieve the success in the first-pass design and reliability. In this paper, finite element model is developed to investigate the effects of geometrical and material stiffness variations on an electro-thermally driven microactuator performance as an example. These microactuators are generally composed of two suspended beam (arm) joined at the free end. This device generates deflection through asymmetric heating of the hot and cold polysilicon arms with variable length or cross-section. These microactuators based on the force and deflection characteristic of elastic members are particularly sensitive to uncertainty in material properties. Polysilicon as a microdevice material shows a wide variation rang for Young’s modulus from batch to batch fabrication process. Also, the microfabrication process that are utilized for microdevice production can yield sometimes shapes that are not geometrically perfect, either due to the microfabrication process limitations itself or because of phenomena that take place during or after microfabrication. These geometrical errors can decrease the net cross section and will affect both modeling and experimental results. The effect of fillet radius at the juncture of this flexible microactuator and contact pads is investigated in this model. The residual stresses due to the fabrication process are taken into account too. The analysis is performed at multiple input voltages to estimate uncertainty bands around the deflection curve of the microactuator. Simulation results are compared with experimental results in literature. The results demonstrate how each of these factors affects the microactuator performance and justifies the deviation of previous nominal results from experimental results.
机译:为了对微型设备进行可靠的设计,实现考虑不确定性分析的模型很重要。实验和产品开发的高昂成本导致人们偏重基于模拟的设计,以实现首过设计和可靠性的成功。本文以有限元模型为例,研究了几何和材料刚度变化对电热驱动微执行器性能的影响。这些微致动器通常由在自由端连接的两个悬挂梁(臂)组成。该设备通过不对称加热长度和横截面可变的热和冷多晶硅臂而产生偏转。这些基于弹性构件的力和挠曲特性的微致动器对材料特性的不确定性特别敏感。多晶硅作为一种微器件材料,其批次之间的杨氏模量差异很大。而且,用于微器件生产的微加工过程有时会产生几何形状不理想的形状,这归因于微加工过程本身的局限性或由于在微加工过程中或之后发生的现象。这些几何误差会减小净横截面,并且会影响建模和实验结果。在此模型中研究了圆角半径在该柔性微致动器和接触垫接合处的影响。还考虑了由于制造过程而产生的残余应力。在多个输入电压下进行分析,以估计微致动器偏转曲线周围的不确定带。仿真结果与文献中的实验结果进行了比较。结果表明,这些因素中的每一个如何影响微致动器的性能,并证明先前的标称结果与实验结果之间存在偏差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号