首页> 外文期刊>Microfluidics and nanofluidics >Viscous dissipation effect in nano-confined shear flows: a comparative study between molecular dynamics and multi-scale hybrid simulations
【24h】

Viscous dissipation effect in nano-confined shear flows: a comparative study between molecular dynamics and multi-scale hybrid simulations

机译:纳米约束剪切流中的粘性耗散效应:分子动力学与多尺度混合模拟之间的比较研究

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

In this work, a full molecular dynamics simulation (MDS) of nano-confined shear flows has been conducted to examine the effect of viscous dissipation and applicability of multi-scale hybrid simulation. In the cases of high shear rate and strong solid-liquid interaction, the difference is clearly seen between the MDS and hybrid simulation results. The applicability of the hybrid simulation is found highly dependent on the effect of viscous dissipation. The nonmonotonic variation of the average temperature found in pressure-driven flows is also found in the present shear-driven flows. By comparatively analyzing the molecular dynamics and hybrid simulation results, it is confirmed that the hybrid simulation is valid and the explicit correlation between the slip and Kapitza lengths is valid in the ranges of shear rate (γ = 0.012-0.094 τ~(-1), τ being the time scale) and solid-liquid interaction factor (β = 0.1-10). Although the hybrid simulation results deviate from the MDS results due to the effect of viscous dissipation, the explicit correlation between the slip and Kapitza lengths still holds.
机译:在这项工作中,进行了纳米约束剪切流的全分子动力学模拟(MDS),以检查粘性耗散的影响和多尺度混合模拟的适用性。在高剪切速率和强固液相互作用的情况下,MDS和混合模拟结果之间的差异显而易见。发现混合仿真的适用性高度依赖于粘性耗散的影响。在当前的剪切驱动流中也发现了在压力驱动流中发现的平均温度的非单调变化。通过对分子动力学和混合模拟结果的比较分析,证实了混合模拟是有效的,在剪切速率范围内(γ= 0.012-0.094τ〜(-1),滑动长度和Kapitza长度之间的显式相关有效。 ,τ为时间标度)和固液相互作用因子(β= 0.1-10)。尽管由于粘性耗散的影响,混合仿真结果与MDS结果有所不同,但滑移长度和Kapitza长度之间仍然存在明确的相关性。

著录项

  • 来源
    《Microfluidics and nanofluidics》 |2015年第1期|103-109|共7页
  • 作者单位

    Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China,School of Engineering and Materials Science, Queen Mary, University of London, London E1 4NS, UK;

    School of Engineering and Materials Science, Queen Mary, University of London, London E1 4NS, UK;

    School of Engineering and Materials Science, Queen Mary, University of London, London E1 4NS, UK;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号