首页> 外文期刊>Microfluidics and nanofluidics >A nonlinear two-degree-of-freedom mass-damper-spring model to predict the isolation of circulating tumor cells in microfluidic-elasto-filtration devices
【24h】

A nonlinear two-degree-of-freedom mass-damper-spring model to predict the isolation of circulating tumor cells in microfluidic-elasto-filtration devices

机译:非线性的两自由度质量阻尼弹簧模型,用于预测微流体弹力过滤装置中循环肿瘤细胞的分离

获取原文
获取原文并翻译 | 示例
       

摘要

Circulating tumor cell (CTC) isolation has made positive impacts on metastatic detection and therapy analysis for cancer patients. Microfluidic-elasto-filtration (MEF) device based on the critical elasto-capillary number (Ca-e*) has been proposed to utilize the optimal multi-parameter conditions, including cell diameter (d(c)), the diameter of cylindrical filter pores (d(p)), nonlinear cell elasticity and hydrodynamic drag force, for selectively capturing CTCs and depleting white blood cells (WBCs). In this paper, we propose a novel two-degree-of-freedom nonlinear mass-damper-spring (m-c-k) model to predict the dynamic behaviors of CTCs and WBCs in a generic MEF device. This model enables the optimization of the device design to achieve extremely high CTC capture efficiency and WBC depletion efficiency. In particular, the function of nonlinear cell stiffness specific to different cell types and MEF's pore diameters is first determined by finite element method with neo-Hookean hyperelastic model, based on which the mechanical behaviors of CTCs and WBCs in MEF devices are systematically studied. Herein, the predicted normalized deformations of a CTC and WBC as a function of Ca-e are used to determine the optimized Ca-e of 0.043, consistent with the experimental results from the fabricated MEF devices using MCF-7 cells (0.04 +/- 0.006). In addition, the normalized cell diameter versus Ca-e phase diagram is proposed for the first time as a useful tool for design optimization of MEF devices and other microfiltration devices.
机译:循环肿瘤细胞(CTC)的分离对癌症患者的转移检测和治疗分析产生了积极影响。已提出基于临界弹性毛细管数(Ca-e *)的微流体弹性过滤(MEF)装置,以利用最佳的多参数条件,包括细胞直径(d(c)),圆柱形过滤器的直径孔(d(p)),非线性细胞弹性和流体动力阻力,用于选择性捕获四氯化碳并耗尽白细胞(WBC)。在本文中,我们提出了一种新颖的两自由度非线性质量阻尼弹簧(m-c-k)模型,以预测通用MEF设备中CTC和WBC的动态行为。该模型可以优化设备设计,以实现极高的CTC捕获效率和WBC耗尽效率。特别是,首先通过具有新Hookean超弹性模型的有限元方法来确定特定于不同细胞类型和MEF孔径的非线性细胞刚度的功能,然后在此基础上系统研究MEF装置中CTC和WBC的力学行为。本文中,将CTC和WBC的预测归一化变形作为Ca-e的函数用于确定0.043的最佳Ca-e,这与使用MCF-7电池制造的MEF装置的实验结果一致(0.04 +/- 0.006)。此外,首次提出归一化的细胞直径与Ca-e相图,作为MEF设备和其他微滤设备设计优化的有用工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号