...
首页> 外文期刊>Microelectronic Engineering >Performance improvement of chip-level CMOS-integrated ReRAM cells through material optimization
【24h】

Performance improvement of chip-level CMOS-integrated ReRAM cells through material optimization

机译:通过材料优化提高芯片级CMOS集成ReRAM单元的性能

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The integration of the resistive random access memory (ReRAM) with CMOS logic circuitry provides a solution to scaling limitations, and offers promising candidates for use in next generation computing applications. It is challenging to realize a reliable, time and cost effective integration technique and at the same time provide device stability with CMOS-compatible materials that are used in the relevant device applications. In this study, we demonstrate a technique for the nm-scale hybrid integration of ReRAM on the foundry-produced CMOS 180 nm technology chip. Tungsten (W), as a material of choice for vertical vias in CMOS circuitry, is employed as the ReRAM electrode. However, W oxidizes readily, having multiple oxidation states, which influences the device reliability. In particular, the generation of semi-stable oxides at the electrode/switching layer (W/HfO2) interface has a profound influence on device performance. To achieve reliable W-based integrated ReRAM, we modulated and controlled the W electrode oxidation within the different co-integrated ReRAM stacks by increasing HfO2 switching layer thickness, through the post-metallization annealing under O-2-ambient, and by adding an Al2O3 barrier layer between the W and HfO2 layers. The effect of W interface modifications is further studied through the analysis of switching mechanism and TEM micro-structural characterization. A notable improvement in HRS/LRS resistance ratio and switching stability was observed in optimally fabricated (W/Al2O3/HfO2/TiN) ReRAM on the back end of the line (BEoL) of 180 nm CMOS chip.
机译:电阻随机存取存储器(ReRAM)与CMOS逻辑电路的集成提供了解决缩放限制的解决方案,并为在下一代计算应用中使用提供了有希望的候选方案。实现可靠,时间和成本有效的集成技术并同时为相关设备应用中使用的CMOS兼容材料提供设备稳定性具有挑战性。在这项研究中,我们演示了一种用于ReRAM在代工厂生产的CMOS 180 nm技术芯片上的纳米级混合集成技术。钨(W)作为CMOS电路中垂直通孔的首选材料,被用作ReRAM电极。然而,W容易氧化,具有多个氧化态,这影响了器件的可靠性。尤其是,在电极/开关层(W / HfO2)界面处生成半稳定氧化物会对器件性能产生深远影响。为了实现可靠的基于W的集成ReRAM,我们通过增加HfO2开关层的厚度,在O-2-环境下进行后金属化退火并添加Al2O3来调制和控制不同共集成ReRAM堆栈中的W电极氧化。 W和HfO2层之间的阻挡层。通过分析开关机理和TEM的微观结构特征,进一步研究了W界面修饰的影响。在180 nm CMOS芯片生产线(BEoL)的后端,以最佳方式制造(W / Al2O3 / HfO2 / TiN)ReRAM,观察到HRS / LRS电阻比和开关稳定性有了显着改善。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号