首页> 外文期刊>Journal of Microelectromechanical Systems >Design and fabrication of microfluidic devices for multiphase mixing and reaction
【24h】

Design and fabrication of microfluidic devices for multiphase mixing and reaction

机译:用于多相混合和反应的微流体装置的设计和制造

获取原文
获取外文期刊封面目录资料

摘要

Using silicon microfabrication technology, microchemical devices have been constructed for the purpose of conducting heterogeneously catalyzed multiphase reactions. The motivation behind the design, the fabrication approach, and the experimental characterization are presented for two classes of devices. The first design involves multiple parallel channels with integrated filter structures to incorporate standard catalytic materials. These catalysts are in the form of finely divided porous particles in a packed-bed arrangement. The second device involves the incorporation of porous silicon as a catalyst support, in the form of a thin layer covering microstructured channels. These microstructured channels simulate the structure of a packed bed and enhance mass transfer relative to an open channel. The ability to incorporate features at the tens-of-microns scale can reduce the mass-transfer limitations by promoting mixing and dispersion for the multiple phases. Directly integrating the catalyst support structures into the channels of the microreactor allows the precise definition of the bed properties, including the support's size, shape and arrangement, and the void fraction. Such a design would find broad applicability in enhancing the transport and active surface area for sensing, chemical, and biochemical conversion devices. Reaction rates for the gas-liquid-solid hydrogenation of cyclohexene using the integrated catalyst with porous silicon as a support compare favorably to those rates obtained with the packed-bed approach. In both cases, the mass transfer coefficient is at least 100 times better than conventional laboratory reactors.
机译:使用硅微细加工技术,已经构造了微化学装置,以进行多相催化的多相反应。针对两类设备提出了设计,制造方法和实验特性背后的动机。第一种设计涉及具有集成过滤器结构的多个平行通道,以合并标准催化材料。这些催化剂为填充床布置的细分的多孔颗粒形式。第二种装置涉及以覆盖微结构化通道的薄层的形式掺入多孔硅作为催化剂载体。这些微结构通道模拟填充床的结构,并相对于开放通道增强了传质。通过促进多相的混合和分散,在数十微米尺度上整合特征的能力可以减少传质限制。将催化剂载体结构直接整合到微反应器的通道中可以精确定义床的性质,包括载体的尺寸,形状和排列以及空隙率。这样的设计将在提高感测,化学和生化转换装置的传输和有效表面积方面具有广泛的适用性。使用集成催化剂和多孔硅作为载体进行环己烯气-液-固加氢的反应速率与填充床方法获得的反应速率相比具有优势。在这两种情况下,传质系数至少是常规实验室反应器的100倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号