...
首页> 外文期刊>Micro & nano letters >Investigations on performance of valveless piezoelectric micropump with concave tuning diffuserozzle elements in transient flow
【24h】

Investigations on performance of valveless piezoelectric micropump with concave tuning diffuserozzle elements in transient flow

机译:带有凹形调节扩散器/喷嘴元件的无阀压电微型泵在瞬态流动中的性能研究

获取原文
获取原文并翻译 | 示例
           

摘要

A diffuserozzle is one of the most frequently-used channels in a valveless piezoelectric micropump, but its efficiency has not been satisfactory. Hence, optimisation of the channel structure is of great significance. The concave tuning diffuserozzle element can obtain steady flow rectification under different Reynolds numbers, and its efficiency is much higher than the conventional diffuserozzle element whose diverging angle is >25 degrees. Therefore, the application of concave tuning on the micropump is promising and worth anticipating. In this work, the experiment and numerical simulation were carried out under the conditions of voltage (50-250 vpp), excitation frequency (10-1000 Hz) and Re-c (100-1000). The results show that the performance of a micropump with concave tuning is better than that with a straight sidewall, as the pump efficiency is improved significantly. The position and size of vortexes are of great significance to the pump efficiency of the micropumps. The distribution of pressure in the micropumps with concave tuning and straight sidewall was displayed. With the increase of characteristic Reynolds number, the adverse pressure gradient occurred. Compared with the straight sidewall, the concave tuning structure can better withstand adverse pressure gradient and delay the boundary layer separation in the channel.
机译:扩散器/喷嘴是无阀压电微型泵中最常用的通道之一,但效率不令人满意。因此,优化通道结构具有重要意义。凹形调谐扩散器/喷嘴元件可以在不同的雷诺数下获得稳定的流量整流,其效率比发散角大于25度的常规扩散器/喷嘴元件要高得多。因此,在微泵上使用凹形调整是有前途的,值得期待。在这项工作中,在电压(50-250 vpp),激励频率(10-1000 Hz)和Re-c(100-1000)的条件下进行了实验和数值模拟。结果表明,随着泵效率的显着提高,具有凹形调整的微型泵的性能要优于具有直形侧壁的微型泵的性能。旋涡的位置和大小对微型泵的泵送效率具有重要意义。显示了具有凹形调整和笔直侧壁的微型泵中的压力分布。随着特征雷诺数的增加,出现了不利的压力梯度。与直侧壁相比,凹形调谐结构可以更好地承受不利的压力梯度并延迟通道中边界层的分离。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号