首页> 外文期刊>Metallurgical and Materials Transactions A >Stored energy, microstructure, and flow stress of deformed metals
【24h】

Stored energy, microstructure, and flow stress of deformed metals

机译:变形金属的储能,微观结构和流动应力

获取原文
获取原文并翻译 | 示例
           

摘要

The stored energy of plastic deformation has been estimated from transmission electron microscope measurements of dislocation boundary spacings and misorientation angles using Al (99.99 pct) cold rolled to reductions of 5 to 90 pct as an example system. In order to obtain the most accurate estimate of stored energy, it is necessary to take into account the presence of two classes of dislocation boundary, considering the boundary misorientation angle distribution and the stereology of each class independently. Stereological relationships are developed to predict the stored energy estimates that would result from electron backscatter pattern (EBSP) investigations on these microstructures. The calculations show that EBSP investigations can be used to estimate the stored energy, but that at low strains, the limited angular resolution will lead to a significant underestimation. A relationship between the flow stress (0.2 pct offset) and the stored energy is found, though the relationship differs significantly for the low and high strain regimes. At low strains, the flow stress is linearly related to the square root of the stored energy (E s ) according to σ − σ 0 = Mα[(G/K)E s ]0.5, where G is the bulk modulus, M is the Taylor factor, and K and α are constants.
机译:塑性变形的存储能量已通过透射电子显微镜对位错边界间距和取向不良角的测量进行了估算,使用Al(99.99 pct)冷轧至压下率降低5至90 pct作为示例系统。为了获得最准确的储能估计,有必要考虑两类位错边界的存在,并分别考虑边界错位角分布和每类的立体感。建立了立体关系,以预测由于对这些微结构的电子背向散射图(EBSP)研究而产生的储能估计。计算表明,EBSP研究可用于估计存储的能量,但是在低应变下,有限的角度分辨率将导致明显的低估。尽管在低应变和高应变状态下,流动应力(0.2 pct偏移)与存储的能量之间存在显着差异,但该关系已找到。在低应变下,根据σ−σ0 =Mα[(G / K)E s ,流变应力与储能(E s )的平方根线性相关。 ] 0.5 ,其中G为体积模量,M为泰勒因子,K和α为常数。

著录项

  • 来源
    《Metallurgical and Materials Transactions A》 |2005年第9期|2371-2378|共8页
  • 作者单位

    the Department of Materials Science and Engineering Tsinghua University 100084 Beijing People’s Republic of China;

    the Department of Materials Science and Engineering Tsinghua University 100084 Beijing People’s Republic of China;

    the Department of Materials Science and Engineering Tsinghua University 100084 Beijing People’s Republic of China;

    the Materials Research Department Risø National Laboratory DK-4000 Roskilde Denmark;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号