...
首页> 外文期刊>Metallurgical and Materials Transactions B >Freeze-Lining Formation of a Synthetic Lead Slag: Part I. Microstructure Formation
【24h】

Freeze-Lining Formation of a Synthetic Lead Slag: Part I. Microstructure Formation

机译:合成铅渣的冻结衬里形成:第一部分。微结构形成

获取原文
获取原文并翻译 | 示例
           

摘要

Recently, freeze linings have been selected more frequently to protect pyrometallurgical reactor walls, due to a number of advantages over conventional refractory linings, such as a self-regenerating capability and the possibility of operating under high-intensity process conditions. A freeze lining is formed on a cooled reactor wall in a time-dependent temperature gradient. A full description of freeze-lining development, including phase formation as a function of temperature, time, and position, is important in understanding freeze-lining formation mechanisms and may be instrumental for the design of a sustainable freeze-lining concept. Freeze-lining formation is therefore investigated in a synthetic lead slag system: PbO-FeO-Fe2O3-ZnO-CaO-SiO2. Lab-scale freeze linings were produced by submerging an air-cooled probe into liquid slag for different times ranging from 1 to 120 minutes. The freeze-lining microstructures were characterized with optical microscopy, scanning electron microscopy (SEM), and electron probe X-ray microanalysis. The results were compared with the results of reference experiments. The freeze-lining formation of the studied slag system is initially dominated by the formation of glass and a highly viscous liquid. After 1 minute, extensive crystallization occurs and further growth of the freeze lining is determined by the growth of the melilite phase, which forms networking crystals. Because the heat transfer occurs very quickly, these melilite crystals form in undercooled liquid. Because the initial solidification rate is high, mass exchange between the freeze lining and bath affects the freeze-lining growth only when the freeze lining almost reaches its steady-state thickness.
机译:近来,由于与常规耐火衬里相比具有许多优点,例如自再生能力和在高强度工艺条件下操作的可能性,更频繁地选择了防冻衬里来保护火法冶金反应器壁。在冷却的反应器壁上以时间相关的温度梯度形成冻结衬。对冻结层发展的完整描述,包括作为温度,时间和位置的函数的相的形成,对于理解冻结层形成机制很重要,并且可能有助于设计可持续的冻结层概念。因此,在合成铅渣系统:PbO-FeO-Fe2 O3 -ZnO-CaO-SiO2 中研究了冻结层的形成。通过将风冷探头浸入液态炉渣中1至120分钟的不同时间来生产实验室规模的防冻衬里。通过光学显微镜,扫描电子显微镜(SEM)和电子探针X射线显微分析对冷冻衬里的微结构进行了表征。将结果与参考实验的结果进行比较。所研究的炉渣系统的冷冻衬里形成最初主要由玻璃和高粘度液体的形成所决定。 1分钟后,发生大量结晶,而冻结衬里的进一步生长则取决于形成网状晶体的橄榄石相的生长。因为传热非常迅速,所以这些过闪石晶体在过冷的液体中形成。因为初始凝固速率高,所以仅当冷冻衬里几乎达到其稳态厚度时,冷冻衬里与熔池之间的质量交换才会影响冷冻衬里的生长。

著录项

  • 来源
    《Metallurgical and Materials Transactions B》 |2009年第5期|619-631|共13页
  • 作者单位

    Materials Science Department Katholieke Universiteit Leuven Leuven 3001 Belgium;

    Pyrometallurgy Research Centre University of Queensland Brisbane St. Lucia QLD 4072 Australia;

    Centre for High Temperature Processes Metallurgy and Refractory Materials Department of Metallurgy and Materials Engineering Katholieke Universiteit Leuven Leuven 3001 Belgium;

    Centre for High Temperature Processes Metallurgy and Refractory Materials Department of Metallurgy and Materials Engineering Katholieke Universiteit Leuven Leuven 3001 Belgium;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号