首页> 外文期刊>Metallurgical and Materials Transactions B >A Thermodynamic Model of Sulfur Distribution Ratio between CaO–SiO2–MgO–FeO–MnO–Al2O3 Slags and Molten Steel during LF Refining Process Based on the Ion and Molecule Coexistence Theory
【24h】

A Thermodynamic Model of Sulfur Distribution Ratio between CaO–SiO2–MgO–FeO–MnO–Al2O3 Slags and Molten Steel during LF Refining Process Based on the Ion and Molecule Coexistence Theory

机译:LF中CaO–SiO 2 –MgO–FeO–MnO–Al 2 O 3 炉渣与钢水之间硫分布比的热力学模型基于离子和分子共存理论的精制过程

获取原文
获取原文并翻译 | 示例
           

摘要

A thermodynamic model for calculating the sulfur distribution ratio between ladle furnace (LF) refining slags and molten steel has been developed by coupling with a developed thermodynamic model for calculating the mass action concentrations of structural units in LF refining slags, i.e., CaO–SiO2–MgO–FeO–MnO–Al2O3 hexabasic slags, based on the ion and molecule coexistence theory (IMCT). The calculated mass action concentrations of structural units in CaO–SiO2–MgO–FeO–Al2O3–MnO slags equilibrated or reacted with molten steel show that the calculated equilibrium mole numbers or mass action concentrations of structural units or ion couples, rather than mass percentage of components, in the slags can represent their reaction abilities. The calculated total sulfur distribution ratio shows a reliable agreement with the measured or the calculated sulfur distribution ratio between the slags and molten steel by other models under the condition of choosing oxygen activity based on (FeO)–[O] equilibrium. Meanwhile, the developed thermodynamic model for calculating sulfur distribution ratio can quantitatively determine the respective contribution of free CaO, MgO, FeO, and MnO in the LF refining slags. A significant difference of desulfurization ability among free component as CaO, MgO, FeO, and MnO has been found with approximately 87–93 pct, 11.43–5.85 pct, 0.81–0.60 pct and 0.30–0.27 pct at both middle and final stages during LF refining process, respectively. A large difference of oxygen activity is found in molten steel at the slag–metal interface and in bulk molten steel. The oxygen activity in molten steel at the slag–metal interface is controlled by (FeO)–[O] equilibrium, whereas the oxygen activity in bulk molten steel is controlled by [Al]–[O] equilibrium. Decreasing the high-oxygen-activity boundary layer beneath the slag–metal interface can promote the desulfurization reaction rate effectively or shorten the refining period during the LF refining process.
机译:通过与已开发的用于计算LF精炼渣中结构单元的质量作用浓度的热力学模型,即CaO–SiO <的热力学模型相结合,开发了一种用于计算钢包炉精炼渣和钢水之间硫分配比的热力学模型。基于离子和分子共存理论(IMCT)的sub> 2 –MgO–FeO–MnO–Al 2 O 3 六价渣。与CaO–SiO 2 –MgO–FeO–Al 2 O 3 –MnO炉渣平衡或反应的结构单元的质量作用浓度钢水表明,计算出的炉渣中结构单元或离子对的平衡摩尔数或质量作用浓度,而不是组分的质量百分比,可以代表其反应能力。在基于(FeO)– [O]平衡选择氧活度的条件下,通过其他模型计算得出的总硫分布比率与炉渣和钢水之间测得的或计算得出的硫分布比率具有可靠的一致性。同时,所开发的用于计算硫分布比的热力学模型可以定量确定LF精炼渣中游离CaO,MgO,FeO和MnO的各自贡献。 LF中间阶段和最终阶段,CaO,MgO,FeO和MnO中的游离组分之间的脱硫能力存在显着差异,分别约为87-93 pct,11.43-5.85 pct,0.81-0.60 pct和0.30-0.27 pct精炼过程。在炉渣-金属界面处的钢水和散装钢水中发现了很大的氧活度差异。渣-金属界面处的钢水中的氧活度受(FeO)-[O]平衡的控制,而散装钢水中的氧活度受[Al]-[O]平衡的控制。减少渣-金属界面下的高氧活性边界层可以有效提高脱硫反应速率或缩短LF精炼过程中的精炼时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号