首页> 外文期刊>Metallurgical and Materials Transactions A >Effect of Upper-Cycle Temperature on the Load-Biased, Strain-Temperature Response of NiTi
【24h】

Effect of Upper-Cycle Temperature on the Load-Biased, Strain-Temperature Response of NiTi

机译:上循环温度对NiTi的载荷平衡,应变-温度响应的影响

获取原文
获取原文并翻译 | 示例
       

摘要

Over the past decade, interest in shape-memory-alloy based actuators has increased as the primary benefits of these solid-state devices have become more apparent. However, much is still unknown about the characteristic behavior of these materials when used in actuator applications. Recently, we showed that the maximum temperature reached during thermal cycling under isobaric conditions could significantly affect the observed mechanical response of NiTi (55 wt pct Ni), especially the amount of transformation strain available for actuation and thus work output. The investigation we report here extends that original work to (1) ascertain whether increases in the upper-cycle temperature would produce additional changes in the work output of the material, which has a stress-free austenite finish temperature of 386 K (113 °C), and (2) determine the optimum cyclic conditions. Thus, isobaric, thermal-cycle experiments were conducted on the aforementioned alloy at various stresses from 50 to 300 MPa using upper-cycle temperatures of 438 K, 473 K, 503 K, 533 K, 563 K, 593 K, and 623 K (165 °C, 200 °C, 230 °C, 260 °C, 290 °C, 320 °C, and 350 °C). The data indicated that the amount of applied stress influenced the transformation strain, as would be expected. However, the maximum temperature reached during the thermal excursion also plays an equally significant role in determining the transformation strain, with the maximum transformation strain observed during thermal cycling to 563 K (290 °C). In situ neutron diffraction at stress and temperature showed that the differences in transformation strain were mostly related to changes in martensite texture when cycling to different upper-cycle temperatures. Hence, understanding this effect is important to optimizing the operation of SMA-based actuators and could lead to new methods for processing and training shape-memory alloys for optimal performance.
机译:在过去的十年中,随着基于这些形状的固态设备的主要好处变得越来越明显,人们对基于形状记忆合金的执行器的兴趣日益增加。但是,在致动器应用中使用这些材料的特性时,仍知之甚少。最近,我们显示了在等压条件下热循环过程中达到的最高温度可能会显着影响所观察到的NiTi(55 wt pct Ni)的机械响应,尤其是可用于驱动并因此产生功输出的转变应变的量。我们在这里报告的调查将原始工作扩展到(1)确定较高循环温度是否会导致材料的功输出产生其他变化,该材料的无应力奥氏体终点温度为386 K(113°C) ),以及(2)确定最佳循环条件。因此,使用438 K,473 K,503 K,533 K,563 K,593 K和623 K的较高循环温度对上述合金在50至300 MPa的各种应力下进行了等压热循环实验( 165°C,200°C,230°C,260°C,290°C,320°C和350°C)。数据表明,如预期的那样,施加的应力量会影响相变应变。但是,在热偏移期间达到的最高温度在确定相变应变方面也起着同等重要的作用,在热循环至563 K(290°C)期间观察到了最大相变应变。在应力和温度下的原位中子衍射表明,当循环到不同的上循环温度时,转变应变的差异主要与马氏体织构的变化有关。因此,了解这种影响对于优化基于SMA的执行器的操作很重要,并且可能会导致加工和训练形状记忆合金以获得最佳性能的新方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号