【24h】

Mechanism of Dendritic Branching

机译:树突分支的机理

获取原文
获取原文并翻译 | 示例
           

摘要

Theories of dendritic growth currently ascribe pattern details to extrinsic perturbations or other stochastic causalities, such as selective amplification of noise and marginal stability. These theories apply capillarity physics as a boundary condition on the transport fields in the melt that conduct the latent heat and/or move solute rejected during solidification. Predictions based on these theories conflict with the best quantitative experiments on model solidification systems. Moreover, neither the observed branching patterns nor other characteristics of dendrites formed in different molten materials are distinguished by these approaches, making their integration with casting and microstructure models of limited value. The case of solidification from a pure melt is reexamined, allowing instead the capillary temperature distribution along a prescribed sharp interface to act as a weak energy field. As such, the Gibbs-Thomson equilibrium temperature is shown to be much more than a boundary condition on the transport field; it acts, in fact, as an independent energy field during crystal growth and produces profound effects not recognized heretofore. Specifically, one may determine by energy conservation that weak normal fluxes are released along the interface, which either increase or decrease slightly the local rate of freezing. Those responses initiate rotation of the interface at specific locations determined by the surface energy and the shape. Interface rotations with proper chirality, or rotation sense, couple to the external transport field and amplify locally as side branches. A precision integral equation solver confirms through dynamic simulations that interface rotation occurs at the predicted locations. Rotations points repeat episodically as a pattern evolves until the dendrite assumes a dynamic shape allowing a synchronous limit cycle, from which the classic repeating dendritic pattern develops. Interface rotation is the fundamental mechanism responsible for dendritic branching.
机译:树突生长的理论目前将模式细节归因于外部扰动或其他随机因果关系,例如噪声的选择性放大和边际稳定性。这些理论将毛细管物理学作为边界条件应用于熔体中传导潜热和/或移动凝固过程中排除的溶质的传输场。基于这些理论的预测与模型凝固系统的最佳定量实验相冲突。此外,这些方法都无法区分观察到的分支模式或在不同熔融材料中形成的树枝状晶体的其他特征,从而使其与有限价值的铸造和微观结构模型相集成。从纯熔体凝固的情况被重新检查,取而代之的是允许沿规定的尖锐界面的毛细管温度分布充当弱能量场。这样,吉布斯-汤姆森平衡温度显示出远远大于传输场上的边界条件。实际上,它在晶体生长过程中起独立的能量场的作用,并产生迄今未见的深远影响。具体而言,可以通过能量守恒来确定沿界面释放的弱法线通量,该通量会略微增加或减少局部冻结率。这些响应在由表面能和形状确定的特定位置处启动界面的旋转。具有适当手性或旋转感的接口旋转耦合到外部传输场,并作为侧分支局部放大。精密积分方程求解器通过动态仿真确认界面旋转发生在预测位置。旋转点随着图案的演化而反复重复,直到枝晶呈现出允许同步极限循环的动态形状为止,经典的重复枝晶图案便从中发展出来。界面旋转是负责树突分支的基本机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号