首页> 外文期刊>Metallurgical and Materials Transactions A >Micro-strain Evolution and Toughening Mechanisms in a Trimodal Al-Based Metal Matrix Composite
【24h】

Micro-strain Evolution and Toughening Mechanisms in a Trimodal Al-Based Metal Matrix Composite

机译:三峰铝基金属基复合材料中的微应变演变和增韧机理

获取原文
获取原文并翻译 | 示例
           

摘要

A trimodal metal matrix composite (MMC) based on AA (Al alloy) 5083 (Al-4.4Mg-0.7Mn-0.15Cr wt pct) was synthesized by cryomilling powders followed by compaction of blended powders and ceramic particles using two successive dual mode dynamic forgings. The microstructure consisted of 66.5 vol pct ultrafine grain (UFG) region, 30 vol pct coarse grain (CG) region and 3.5 vol pct reinforcing boron carbide particles. The microstructure imparted high-tensile yield strength (581 MPa) compared to a conventional AA 5083 (242 MPa) and enhanced ductility compared to 100 pct UFG Al MMC. The deformation behavior of the heterogeneous structure and the effects of CG regions on crack propagation were investigated using in situ scanning electron microscopy micro-tensile tests. The micro-strain evolution measured using digital image correlation showed early plastic strain localization in CG regions. Micro-voids due to the strain mismatch at CG/UFG interfaces were responsible for crack initiation. CG region toughening was realized by plasticity-induced crack closure and zone shielding of disconnected micro-cracks. However, these toughening mechanisms did not effectively suppress its brittle behavior. Further optimization of the CG distribution (spacing and morphology) is required to achieve toughness levels required for structural applications.
机译:通过对粉末进行冷冻研磨,然后使用两个连续的双模态动态压实混合粉末和陶瓷颗粒来合成基于AA(铝合金)5083(Al-4.4Mg-0.7Mn-0.15Cr wtpct)的三峰金属基复合材料(MMC)锻件。显微组织由66.5vol%的超细晶粒(UFG)区,30vol%的粗晶粒(CG)区和3.5vol%的增强碳化硼颗粒组成。与传统的AA 5083(242MPa)相比,该显微组织具有较高的拉伸屈服强度(581MPa),与100pct UFG Al MMC相比具有更高的延展性。使用原位扫描电子显微镜显微拉伸试验研究了异质结构的变形行为和CG区对裂纹扩展的影响。使用数字图像相关性测量的微应变演变显示了早期塑性应变在CG区域的定位。由于CG / UFG界面处的应变不匹配而导致的微孔是裂纹萌生的原因。 CG区域增韧是通过塑性诱导的裂纹闭合和断开的微裂纹的区域屏蔽实现的。但是,这些增韧机制不能有效地抑制其脆性。为了达到结构应用所需的韧性水平,需要进一步优化CG分布(间距和形态)。

著录项

  • 来源
    《Metallurgical and Materials Transactions A》 |2015年第3期|1196-1204|共9页
  • 作者单位

    Department of Chemical Engineering and Materials Science University of Southern California">(1);

    Department of Chemical Engineering and Materials Science University of California Davis">(2);

    Department of Mechanical Engineering California State University Sacramento">(3);

    Department of Chemical Engineering and Materials Science University of California Davis">(2);

    Department of Chemical Engineering and Materials Science University of California Davis">(2);

    Department of Chemical Engineering and Materials Science University of California Davis">(2);

    Department of Chemical Engineering and Materials Science University of Southern California">(1);

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号