...
首页> 外文期刊>Mechanics of materials >Maximizing bandgap width and in-plane stiffness of porous phononic plates for tailoring flexural guided waves: Topology optimization and experimental validation
【24h】

Maximizing bandgap width and in-plane stiffness of porous phononic plates for tailoring flexural guided waves: Topology optimization and experimental validation

机译:最大化多孔声子板的带隙宽度和面内刚度,以定制弯曲导波:拓扑优化和实验验证

获取原文
获取原文并翻译 | 示例
           

摘要

Phononic crystal plates (PhPs) with porous heterogeneities manufactured through perforation of a uniform plate comprise effective wave reflecting interfaces and are free from complexities and interfacial imperfections associated with fabricating bi-material designs. However, numerical optimization of such porous PhPs for maximized bandgap efficiency naturally leads to topologies with isolated solid domains, or disconnected island-like features. Requiring PhPs to exhibit an adequate stiffness is, therefore, an important design consideration. This paper presents a multi-objective topology optimization study with experimental validation to explore the relationship between bandgap efficiency and effective in-plane stiffness, introducing topologies exhibiting superior properties compared to those reported in earlier works. Topology optimization is performed in two stages: first, at a relatively coarse resolution followed by a topology optimization on a refined mesh. The minimum allowable length scale of features is maintained across the mesh refinement, and thus the refined stage primarily leads to optimization of the feature boundaries, which is shown to significantly enhance response. Bandgap of fundamental flexural guided wave modes is studied herein, and it is shown how bandgap efficiency is degraded by increasing the in-plane stiffness. Distinct stiff and compliant topology modes are realized in the intermediate section of the optimized Pareto fronts which offer variation of structural stiffness while having almost the same bandgap efficiency, with potential application as base cells in design of gradient phononic lattices. A subset of promising stiff and compliant optimized topologies are manufactured by water-jetting of an aluminum plate and experimentally tested to validate the calculated bandgap efficiencies and effective elastic properties. (C) 2016 Elsevier Ltd. All rights reserved.
机译:通过均匀板的穿孔制造的具有多孔异质性的声子晶体板(PhP)包含有效的波反射界面,并且没有与制造双材料设计相关的复杂性和界面缺陷。但是,为了最大化带隙效率而对此类多孔PhP进行数值优化,自然会导致拓扑结构具有孤立的固态域或不连续的岛状特征。因此,要求PhP具有足够的刚度是重要的设计考虑因素。本文提出了一个多目标拓扑优化研究,并进行了实验验证,以探索带隙效率与有效平面内刚度之间的关系,并介绍了与早期工作相比具有更好性能的拓扑。拓扑优化分两个阶段进行:首先,以相对粗略的分辨率进行,然后在精制网格上进行拓扑优化。在整个网格细化过程中,要素的最小允许长度尺度得以保持,因此,精炼阶段主要导致要素边界的优化,这表明可以显着增强响应。本文研究了基本弯曲导波模式的带隙,并显示了如何通过增加面内刚度来降低带隙效率。在优化的Pareto前沿的中间部分实现了截然不同的刚性和顺应性拓扑模式,该模式可提供结构刚度的变化,同时具有几乎相同的带隙效率,并有可能作为基础单元用于梯度声子晶格的设计。通过铝板的水射流制造出有希望的刚度和合规性优化拓扑的子集,并进行了实验测试,以验证计算出的带隙效率和有效的弹性。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号