首页> 外文期刊>Mechanics of materials >Broadband dynamic elastic moduli of honeycomb lattice materials: A generalized analytical approach
【24h】

Broadband dynamic elastic moduli of honeycomb lattice materials: A generalized analytical approach

机译:蜂窝晶格材料的宽带动态弹性模型:广义分析方法

获取原文
获取原文并翻译 | 示例
           

摘要

A generic analytical framework is proposed to obtain the dynamic elastic moduli of lattice materials under steady-state vibration conditions. The dynamic deformation behaviour of the individual beam elements of a lattice is distinct from the behaviour under a static condition. This leads to a completely different global deformation pattern of the lattice material and subsequently opens up a tremendous opportunity to modulate amplitude and phase of the elastic properties of lattices as a function of the ambient vibration. The dynamic stiffness approach proposed in this article precisely captures the sub-wavelength scale dynamics of the periodic network of beams in a lattice material using a single beam-like member. Here the dynamic stiffness matrix of a damped beam element based on the Timoshenko beam theory along with axial stretching is coupled with the unit cell-based approach to derive the most general closed-form analytical formulae for the elastic moduli of lattice materials across the whole frequency range. It is systematically shown how the general expressions of dynamic elastic moduli can be reduced to different special cases by neglecting axial and shear deformations under dynamic as well as classical static conditions. The significance of developing the dynamic stiffness approach compared to conventional dynamic finite element approach is highlighted by presenting detailed analytical derivations and representative numerical results. Further, it is shown how the analytical framework can be readily extended to lattices with non-prismatic beam elements with any spatial variation in geometry and intrinsic material properties. In general, research activities in the field of lattice metamaterials dealing with elastic properties revolve around intuitively designing the microstructural geometry of the lattice structure. Here we propose to couple the physics of deformation as a function of vibrating frequency along with the conventional approach of designing microstructural geometry to expand the effective design space significantly. The stretching-enriched physics of deformation in the lattice materials in addition to the bending and shear deformations under dynamic conditions lead to complex-valued elastic moduli due to the presence of damping in the constituent material. The amplitude, as well as the phase of effective elastic properties of lattice materials, can be quantified using the proposed approach. The dependence of Poisson?s ratio on the intrinsic material physics in case of a geometrically regular lattice is found to be in contrary to the common notion that Poisson?s ratios of perfectly periodic lattices are only the function of microstructural geometry. The generic analytical approach for analysing the elastic moduli is applicable to any form of two- or three-dimensional lattices, and any profile of the constituent beam-like elements (different cross-sections as well as spatially varying geometry and intrinsic material properties) through a wide range of frequency band. The closed-form expressions of elastic moduli derived in this article can be viewed as the broadband dynamic generalisation of the well-established classical expressions of elastic moduli under static loading, essentially adding a new exploitable dimension in the metamaterials research in terms of dynamics of the intrinsic material.
机译:提出了一种通用分析框架,以在稳态振动条件下获得晶格材料的动态弹性模量。晶格的各个光束元件的动态变形行为与静态条件下的行为不同。这导致格子材料的完全不同的全局变形图案,随后为像环境振动的函数打开了调制晶格弹性特性的幅度和相位的巨大机会。本文提出的动态刚度方法精确地捕获了使用单个光束状构件在晶格材料中的周期性网络的子波长比例动态。这里,基于Timoshko光束理论的阻尼梁元件的动态刚度矩阵与轴向拉伸相结合,与基于单元电池的方法耦合,以导出整个频率的晶格材料的弹性模量的最通用闭合形式的分析公式范围。系统地示出了如何通过忽视动态和剪切变形以及经典的静态条件来减少动态弹性模量的一般表达如何减少到不同的特殊情况。通过呈现详细的分析衍生和代表性数值结果,突出了发展动态刚度方法的动态刚度方法的重要性。此外,示出了如何用非棱镜梁元件容易地扩展分析框架,其具有几何形状和内在材料特性的任何空间变化。通常,处理弹性物质的晶格超材料领域的研究活动围绕直观地设计了格子结构的微观结构几何形状。在这里,我们建议将变形的物理与振动频率的函数耦合,以及设计微观结构几何形状的传​​统方法,显着扩展有效的设计空间。除了在动态条件下的弯曲和剪切变形之外,在动态条件下的弯曲和剪切变形之外,富集的物理学的变形物理学引起的,由于在构成材料中存在阻尼,导致复合值的弹性模量。可以使用所提出的方法量化幅度,以及晶格材料的有效弹性特性的相位。泊松的依赖性在几何常规格子的情况下,发现在几何常规晶格中的内在材料物理学中的比例违背了泊松的普通概念,即完全周期性格子的比率只是微观结构几何形状的功能。用于分析弹性模量的通用分析方法适用于任何形式的两维格子,以及组成光束状元件(不同横截面以及空间不同的几何形状和内在材料特性)的任何形式广泛的频段。本文中得出的弹性模量的闭合形式表达可以被视为静态负荷下良好的弹性模量的宽带动态概括,基本上在超级材料中增加了新的可利用维度,在动态的动态方面内在材料。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号