...
首页> 外文期刊>Mechanics of materials >Micromechanical modeling and experimental verification of self-healing microcapsules-based composites
【24h】

Micromechanical modeling and experimental verification of self-healing microcapsules-based composites

机译:自修复微囊复合材料的微力学建模和实验验证

获取原文
获取原文并翻译 | 示例
           

摘要

Recent investigations have focused on the evaluation of the effective elastic properties of microcapsules-based composites theoretically by assuming the constituents' mechanical properties. The aim of this study is to investigate the effective elastic properties of self-healing microcapsules-based composites (SHMC) theoretically and validate them experimentally. The elastic modulus of the matrix material was evaluated using dynamic mechanical analysis (DMA) of neat polymer samples. Furthermore, the self-healing microcapsules (SHM) elastic modulus was determined through single-microcapsule compression testing followed by finite element modeling. The determined constituents' elastic properties were used in modeling of SHMC to determine their effective elastic properties analytically. An analytical model, based on Eshelby and Mori-Tanka (E&M-T) two-constituent models, was reformulated and extended to be suitable for a hierarchical approach for solving core-shell-matrix three-constituent SHMC. The results were compared with predictions of the differential-effective medium theory and the rule of mixtures. Finally, all analytical models were compared to experimental results obtained from DMA of 5, 10, and 20 vol% urea-formaldehyde/dicyclopentadiene (UF/DCPD) SHM embedded in epoxy matrix. Good agreement was achieved and the reformulated E&M-T model successfully predicted the elastic properties of SHMC. It was found that the effect of the test uncertainty, the microcapsule geometric parameters for the same batch, and the shell elastic modulus for a given load-deformation curve on the effective elastic properties of SHMC is insignificant. The effective elastic properties depend only on the microcapsules volume fraction up to a certain limit.
机译:最近的研究集中在理论上通过假设组分的机械性能来评估基于微胶囊的复合材料的有效弹性性能。这项研究的目的是从理论上研究自修复微胶囊基复合材料(SHMC)的有效弹性,并通过实验对其进行验证。使用纯聚合物样品的动态力学分析(DMA)评估基质材料的弹性模量。此外,通过单微胶囊压缩测试,然后进行有限元建模,确定了自愈微胶囊(SHM)的弹性模量。将确定的成分的弹性特性用于SHMC建模,以分析方式确定其有效弹性特性。重新构造并扩展了基于Eshelby和Mori-Tanka(E&M-T)两成分模型的分析模型,以适合用于解决核-壳-基质三成分SHMC的分层方法。将结果与差分有效介质理论和混合规则的预测进行了比较。最后,将所有分析模型与从嵌入环氧树脂基体中的5、10和20%(体积)尿素-甲醛/二环戊二烯(UF / DCPD)SHM的DMA获得的实验结果进行比较。取得了良好的一致性,重新制定的E&M-T模型成功预测了SHMC的弹性。结果发现,测试不确定性,同一批次的微胶囊几何参数以及给定载荷-变形曲线的壳弹性模量对SHMC的有效弹性的影响不显着。有效的弹性性质仅取决于微囊的体积分数直至一定极限。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号