...
首页> 外文期刊>Mechanical systems and signal processing >Non-linear control of a hydraulic piezo-valve using a generalised Prandtl-Ishlinskii hysteresis model
【24h】

Non-linear control of a hydraulic piezo-valve using a generalised Prandtl-Ishlinskii hysteresis model

机译:使用广义Prandtl-Ishlinskii磁滞模型对液压压电阀进行非线性控制

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The potential to actuate proportional flow control valves using piezoelectric ceramics or other smart materials has been investigated for a number of years. Although performance advantages compared to electromagnetic actuation have been demonstrated, a major obstacle has proven to be ferroelectric hysteresis, which is typically 20% for a piezoelectric actuator. In this paper, a detailed study of valve control methods incorporating hysteresis compensation is made for the first time. Experimental results are obtained from a novel spool valve actuated by a multi-layer piezoelectric ring bender. A generalised Prandtl-Ishlinskii model, fitted to experimental training data from the prototype valve, is used to model hysteresis empirically. This form of model is analytically invertible and is used to compensate for hysteresis in the prototype valve both open loop, and in several configurations of closed loop real time control system. The closed loop control configurations use PID (Proportional Integral Derivative) control with either the inverse hysteresis model in the forward path or in a command feedforward path. Performance is compared to both open and closed loop control without hysteresis compensation via step and frequency response results. Results show a significant improvement in accuracy and dynamic performance using hysteresis compensation in open loop, but where valve position feedback is available for closed loop control the improvements are smaller, and so conventional PID control may well be sufficient. It is concluded that the ability to combine state-of-the-art multi-layer piezoelectric bending actuators with either sophisticated hysteresis compensation or closed loop control provides a route for the creation of a new generation of high performance piezoelectric valves.
机译:多年来,人们一直在研究使用压电陶瓷或其他智能材料驱动比例流量控制阀的潜力。尽管已证明与电磁驱动相比具有性能优势,但主要障碍已被证明是铁电磁滞现象,对于压电致动器通常为20%。本文首次对具有滞后补偿的阀门控制方法进行了详细研究。从多层压电环形弯曲器驱动的新型滑阀获得了实验结果。拟合来自原型阀的实验训练数据的广义Prandtl-Ishlinskii模型用于经验性地建立滞后模型。这种形式的模型在分析上是可逆的,可用于补偿原型阀的开环和几种配置的闭环实时控制系统中的滞后。闭环控制配置将PID(比例积分微分)控制与正向路径或命令前馈路径中的逆滞回模型一起使用。通过阶跃和频率响应结果,将性能与无滞后补偿的开环和闭环控制进行了比较。结果表明,在开环中使用滞后补偿可以显着提高精度和动态性能,但是在阀门位置反馈可用于闭环控制的情况下,改善较小,因此常规PID控制可能就足够了。结论是,将先进的多层压电弯曲执行器与复杂的磁滞补偿或闭环控制相结合的能力为创建新一代高性能压电阀提供了一条途径。

著录项

  • 来源
    《Mechanical systems and signal processing》 |2017年第1期|412-431|共20页
  • 作者单位

    Faculty of Mechanical Engineering and Management, Institute of Mechanical Technology, Poznan University of Technology, Piotrowo Street 3, Poznan 60-965, Poland;

    Faculty of Mechanical Engineering and Management, Institute of Mechanical Technology, Poznan University of Technology, Piotrowo Street 3, Poznan 60-965, Poland;

    Centre for Power Transmission and motion Control, Department of Mechanical Engineering, University of Bath, Bath, BA2 7AY, UK;

    Centre for Power Transmission and motion Control, Department of Mechanical Engineering, University of Bath, Bath, BA2 7AY, UK;

    Centre for Power Transmission and motion Control, Department of Mechanical Engineering, University of Bath, Bath, BA2 7AY, UK;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Hydraulic valve; Piezoelectric actuator; Non-linear control; Hysteresis; Generalised Prandtl-Ishlinskii model;

    机译:液压阀;压电执行器;非线性控制;磁滞广义Prandtl-Ishlinskii模型;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号