首页> 外文期刊>Mechanical systems and signal processing >A survey of piezoelectric actuators with long working stroke in recent years: Classifications, principles, connections and distinctions
【24h】

A survey of piezoelectric actuators with long working stroke in recent years: Classifications, principles, connections and distinctions

机译:近年来对长行程压电执行器的调查:分类,原理,连接和区别

获取原文
获取原文并翻译 | 示例
       

摘要

The development of piezoelectric actuation, starting from single-layer materials with the converse piezoelectric effect, then progressing to multilayer piezo-stack actuators, amplified actuators, non-resonant stepping actuators, and resonant ultrasonic actuators, researchers have been developing methodologies to expand the output displacement of the piezoelectric materials. With these developments, the working stroke of the piezoelectric actuators has been increased from the micrometer-scale to the millimeter-scale, then to the centimeter-scale, or even without limit. There are both obvious distinctions and close connections among these approaches. In this paper, we summarize and classify these approaches systematically. Centering around the long working stroke, we not only discuss the pros and cons for each type, but also explore the derivative relations among these principles. Particularly the stepping actuators, by replacing the clamping mechanism, the inchworm actuator, seal actuator and inertial actuator can transform into each other. The structure of this paper aids in understanding the piezoelectric actuators clearly. Moreover, this paper is also beneficial for determining suitable designs, applicable fields and potential directions for future breakthroughs in technology. (C) 2019 Elsevier Ltd. All rights reserved.
机译:压电致动技术的发展,从具有逆压电效应的单层材料开始,然后发展到多层压电叠层致动器,放大致动器,非共振步进致动器和共振超声致动器,研究人员一直在研究扩大输出功率的方法压电材料的位移。随着这些发展,压电致动器的工作行程已从微米级增加到毫米级,然后又增加到厘米级,甚至没有限制。这些方法之间既有明显的区别又有密切的联系。在本文中,我们对这些方法进行了总结和分类。我们围绕着漫长的工作行程,不仅讨论每种类型的利弊,而且还探讨了这些原则之间的派生关系。特别是,通过替换夹紧机构,步进致动器可以使inch蠕虫致动器,密封致动器和惯性致动器彼此转换。本文的结构有助于清楚地了解压电致动器。此外,本文对于确定合适的设计,适用领域以及未来技术突破的潜在方向也很有帮助。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号