...
首页> 外文期刊>Mechanical systems and signal processing >A hybrid probabilistic framework for model validation with application to structural dynamics modeling
【24h】

A hybrid probabilistic framework for model validation with application to structural dynamics modeling

机译:用于模型验证的混合概率框架,并应用于结构动力学建模

获取原文
获取原文并翻译 | 示例

摘要

Identifying useful mathematical models of physical systems is an essential part of computational modeling and simulation. Once appropriate models are identified, they can be used for applications such as response prediction, structural control, monitoring structural integrity, lifetime prognosis, etc. The number of models and model classes available to the modeler to represent a physical phenomenon, however, can be very large. Retaining all available models throughout a study can be computationally burdensome, so the modeler has the significant problem of identifying the valid models to be used in further studies. To address this challenge, a probabilistic framework is proposed herein for validating models by intertwining the concepts of model falsification and Bayesian model selection. Model falsification, based on the philosophy that measurements can only be used to falsify models, is used in this framework in both pre- and postprocessing steps to eliminate models and model classes, respectively, that cannot explain the measurements. This is the first study to propose a framework to integrate these two paradigms. A likelihood-bound model falsification, previously introduced by the authors, determines the validity of the initial candidate model classes, using the false discovery rate (FDR), and removes most of the incorrect ones without incurring any significant additional computational burden. Next, Bayesian model selection, which assigns posterior model class probabilities based on Bayes' theorem, is applied to the remaining model classes to identify the model(s) and model class(es) that provide predictions that probabilistically best fit the data. Finally, a postprocessing likelihood-bound falsification checks the validity of the final model class (es). The proposed framework is first illustrated through two nonlinear structural dynamics examples that show the efficacy of the proposed framework in identifying models for these structures as well as reducing the computational burden relative to Bayesian model selection applied alone. Finally, a third example uses measurement data from experiments performed on a full-scale four-story base-isolated building at the world's largest shake table in Japan's "E-Defense" laboratory. (C) 2018 Elsevier Ltd. All rights reserved.
机译:识别物理系统的有用数学模型是计算建模和仿真的重要组成部分。一旦确定了合适的模型,它们便可以用于诸如响应预测,结构控制,监视结构完整性,寿命预测等应用。建模者可用来表示物理现象的模型和模型类别的数量可以是很大。保留整个研究中的所有可用模型可能在计算上很繁琐,因此建模者面临一个重大问题,即确定要在进一步研究中使用的有效模型。为了解决这个挑战,本文提出了一种概率模型,通过将模型伪造和贝叶斯模型选择的概念交织在一起来验证模型。基于伪造原理,即测量只能用于伪造模型,模型伪造用于该框架的预处理和后处理步骤中,以分别消除无法解释度量的模型和模型类。这是首次提出一个框架来整合这两个范例的研究。作者先前提出的似然约束模型伪造,使用错误发现率(FDR)确定初始候选模型类的有效性,并消除大多数不正确的模型,而不会造成任何重大的额外计算负担。接下来,将基于贝叶斯定理分配后验模型类概率的贝叶斯模型选择应用于其余模型类,以标识提供概率最适合数据的预测的模型和模型类。最后,后处理可能性约束伪造检查最终模型类的有效性。首先通过两个非线性结构动力学示例说明了所提出的框架,这些例子显示了所提出的框架在识别这些结构的模型以及减少相对于单独应用的贝叶斯模型选择的计算负担方面的功效。最后,第三个示例使用来自在日本“ E-Defense”实验室中世界上最大的振动台上的全尺寸四层基础隔离建筑物上进行的实验的测量数据。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号