首页> 外文期刊>Materials science forum >Numerical Analysis of Stray Grain Formation during Laser Welding Nickel-Based Single-Crystal Superalloy Part Ⅲ: Crystallography-Dependent Solidification Behavior
【24h】

Numerical Analysis of Stray Grain Formation during Laser Welding Nickel-Based Single-Crystal Superalloy Part Ⅲ: Crystallography-Dependent Solidification Behavior

机译:激光焊接镍基单晶超合金部分Ⅲ:晶体学依赖性行为的数值分析

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The solidification temperature range was numerically analyzed to optimize nonequilibrium solidification behavior during ternary Ni-Cr-Al nickel-based single-crystal superalloy weld pool solidification with variation of laser welding conditions (either heat input or welding configuration). The distribution of solidification temperature range along the fusion boundary is beneficially symmetrical about the weld pool centerline in the (001)/[100] welding configuration. The distribution of solidification temperature range along the fusion boundary is detrimentally asymmetrical about the weld pool centerline in the (001)/[l 10] welding configuration. The stray grain formation and solidification cracking are preferentially confined to [100] dendrite growth region. [001] epitaxial growth region with columnar dendrite morphology is favored at the expense of undesirable [100] growth region with equiaxed dendrite morphology to facilitate essential single-crystal solidification with considerable reduction of heat input. The smaller heat input is used, the narrower solidification temperature range is thermodynamically promoted to reduce nucleation and growth of stray grain formation with decrease of constitutional undercooling ahead of dendrite tip and mitigate thermo-metallurgical factors for morphology instability and microstructure anomalies. Potential low heat input(both decreasing laser power and increasing welding speed) with (001)/[100] welding configuration decreases solidification temperature range to significantly minimize columnar/equiaxed transition (CET) and stray grain formation, and improve resistance to solidification cracking through microstructure control. On both sides of weld pool are imposed by the same heat input, while the solidification temperature range along the fusion boundary inside of [100] dendrite growth region on the right part of the weld pool is spontaneously wider than that of [010] dendrite growth region on the left part to increase solidification cracking susceptibility in the (001)/[ 110] welding configuration. Furthermore, another mechanism of solidification cracking as consequence of severe solidification behavior and anomalous microstructure with asymmetrical crystallographic orientation is therefore proposed. The theoretical predictions are well verified by experiment results. The useful and satisfactory numerical modeling is also available for other single-crystal superalloys during successful laser repair process without stray grain formation.
机译:数值分析凝固温度范围以在三元Ni-Cr-Al镍的单晶超合金焊接池固化期间优化非喹耳凝固行为,具有激光焊接条件的变化(热输入或焊接配置)。沿熔融边界的凝固温度范围的分布在(001)/ [100]焊接配置中的焊接池中心线有利地对称。沿熔融边界的凝固温度范围的分布在(001)/ [L10]焊接配置中的焊接池中心线上是不对称的。杂散晶粒形成和凝固裂解优先限制在枝晶生长区域。具有柱状枝晶形态的外延生长区域以等待的枝晶形态的不希望的[100]生长区域为代价,以促进必需的单晶凝固,具有相当大降低的热输入。使用较小的热量输入,热力学促进较窄的凝固温度范围,以减少叶绿粒细胞的减少减少枝晶尖端的核心籽粒形成的成核和生长,并减轻了热冶金因子的形态不稳定和微观结构异常。具有(001)/ [100]焊接配置的潜在低热输入(焊接功率降低和焊接速度增加)降低凝固温度范围,以显着最小化柱状/等式的过渡(CET)和杂散晶粒形成,并改善耐凝固裂解的抗性微观结构控制。在焊接池的两侧由相同的热输入施加,而沿着焊接池的右侧的熔池内部的熔融边界的凝固温度范围被自自发地宽于枝晶生长左侧区域在左部增加(001)/ [110]焊接配置中的凝固裂化敏感性。因此,因此提出了作为严重凝固行为的后果和具有不对称晶体取向的异常微结构的另一种凝固机制。通过实验结果验证理论预测。在没有杂散晶粒形成的成功激光修复过程中,其他单晶高级合金也可用于其他单晶高温合金的有用和令人满意的数值建模。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号