首页> 外文期刊>Materials Science and Engineering >Effects of deformation conditions on the microstructure and substructure evolution of TiBw/Ti60 composite with network structure
【24h】

Effects of deformation conditions on the microstructure and substructure evolution of TiBw/Ti60 composite with network structure

机译:变形条件对网络结构TiBw / Ti60复合材料微观结构和亚结构演变的影响

获取原文
获取原文并翻译 | 示例
           

摘要

The microstructure evolution of TiBw/Ti60 composite with network structure has been investigated during isothermal compression in the temperature range of 900-1100 ℃ and strain rate range of 0.001-1 s~(-1). Substructure evolution and deformation mechanism have been further investigated by electron backscatter diffraction (EBSD). In α+β phase region, the degree of flow softening decreases with the increase of temperatures and strain rates. At 900 ℃, flow softening is attributed to the dynamic recovery (DRV). At 950 ℃, flow softening is mainly attributed to globularization of primary α (α_p) phase with the continuous dynamic recrystallization mechanism (CDRX). With decreasing strain rates, low angle grain boundaries (LAGBs) in α_p phase were decreased and transformed into high angle grain boundaries (HAGBs), which can result in globularization of α_p phase. In single β phase region, the prior β grain boundaries are reconstructed based on the misorientation criterion between α_s-colonies using the EBSD data. Moreover, DRV, DRX and the growth of β grains occurred at low strain rates. In addition, TiBw played an important role on the microstructure evolution of matrix. At high strain rates, TiBw were seriously broken and TiBw were surrounded by lots of LAGBs. At low strain rate, DRX of p phase and globularization of a phase occurred prior near TiBw region due to providing the nucleation site for DRX and strain accumulation respectively.
机译:研究了在900-1100℃的温度范围和0.001-1 s〜(-1)的应变速率范围内等温压缩过程中具有网络结构的TiBw / Ti60复合材料的显微组织演变。通过电子背散射衍射(EBSD)进一步研究了亚结构的演化和变形机理。在α+β相区域,流动软化程度随温度和应变率的增加而降低。在900℃时,流动软化归因于动态恢复(DRV)。 950℃时的流动软化主要归因于具有连续动态重结晶机制(CDRX)的初生α(α_p)相的球状化。随着应变率的降低,α_p相的低角度晶界(LAGBs)减少并转变为高角度晶界(HAGBs),这可能导致α_p相的球化。在单个β相区域中,使用EBSD数据基于α_s菌落之间的取向错误准则重建先前的β晶界。而且,DRV,DRX和β晶粒的生长在低应变速率下发生。此外,TiBw在基体的微观结构演变中也起着重要作用。在高应变率下,TiBw严重断裂,并且TiBw被许多LAGB包围。在低应变速率下,由于分别为DRX和应变积累提供了成核位点,因此在TiBw区域附近先发生了p相的DRX和一相的球状化。

著录项

  • 来源
    《Materials Science and Engineering》 |2015年第11期|316-325|共10页
  • 作者单位

    School of Materials Science and Engineering, Harbin Institute of Technology, P.O. Box 433, Harbin 150001, China;

    School of Materials Science and Engineering, Harbin Institute of Technology, P.O. Box 433, Harbin 150001, China;

    School of Materials Science and Engineering, Harbin Institute of Technology, P.O. Box 433, Harbin 150001, China;

    School of Materials Science and Engineering, Harbin Institute of Technology, P.O. Box 433, Harbin 150001, China;

    School of Materials Science and Engineering, Harbin Institute of Technology, P.O. Box 433, Harbin 150001, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Titanium matrix composites; EBSD; Microstructure evolution; Deformation mechanism; Substructure;

    机译:钛基复合材料;EBSD;微观组织演变;变形机制;子结构;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号