首页> 外文期刊>Materials & design >Investigations of electronic and thermoelectric properties of half-Heusler alloys XMgN (X = Li, Na, K) by first-principles calculations
【24h】

Investigations of electronic and thermoelectric properties of half-Heusler alloys XMgN (X = Li, Na, K) by first-principles calculations

机译:通过第一性原理研究半霍斯勒合金XMgN(X = Li,Na,K)的电子和热电性能

获取原文
获取原文并翻译 | 示例
           

摘要

The rapid depletion of the fossil fuels and their environment repercussion can be resolved wisely by exploring the efficient and sustainable materials which have the ability to convert waste heat into electricity. Half-Heusler materials are also considered one of the promising class for the thermoelectric applications. In this paper, the investigations on the thermoelectric properties of half-Heusler compounds, XMgN (X = Li, Na, K) are reported. The study is carried out within full potential linearised augmented plane wave plus local orbital approach (FP-LAPW + lo) in conjunction with the semi-empirical Boltzmann theory. To incorporate exchange-correlation energy/potential part, Perdew and Wang (PW) suggested local density approximation (LDA), parameterized generalized gradient approximation (GGA) by Perdew-Berke-Ernzerhof (PBE) and the modified Becke-Johnson (mBJ) exchange potential by Trans-Blaha are used. Our electronic band structure calculations show that the KMgN is indirect band gap material, whereas LiMgN and NaMgN demonstrate their direct electronic band gap structure. To comprehend their thermoelectric character, the calculations of the Seebeck coefficient, electrical conductivity, thermal conductivity, power factor and figure of merit (ZT) are carried out at temperatures of values 300 K, 600 K, and 900 K. From our calculations, the optimal value of Seebeck coefficient for the all three materials although was found at 300 K, the results of the Seebeck coefficient for the LiMgN were found more good as compared to NaMgN and KMgN and in coordination with the Lee et al. study as well. Similarly, electrical conductivity results endorse the Wiedemann-Franz law. The calculated results of the ZT parameter (ZT similar to 1) for the all three materials (LiMgN, NaMgN, and KMgN) revealing that the investigated materials have a potential to be used for thermoelectric applications. (C) 2017 Elsevier Ltd. All rights reserved.
机译:化石燃料的迅速枯竭及其对环境的影响可以通过探索具有将废热转化为电能的有效且可持续的材料来明智地解决。 Half-Heusler材料也被认为是热电应用中有前途的一类。本文报道了关于半霍斯勒化合物XMgN(X = Li,Na,K)的热电性质的研究。这项研究是在全势线性化增强平面波加局部轨道方法(FP-LAPW + lo)的基础上结合半经验玻尔兹曼理论进行的。为了纳入交换相关能量/势能部分,Perdew和Wang(PW)建议使用Perdew-Berke-Ernzerhof(PBE)的局部密度近似(LDA),参数化广义梯度近似(GGA)和改进的Becke-Johnson(mBJ)交换使用Trans-Blaha的电位。我们的电子能带结构计算表明,KMgN是间接带隙材料,而LiMgN和NaMgN证明了它们的直接电子带隙结构。为了理解它们的热电特性,塞贝克系数,电导率,热导率,功率因数和品质因数(ZT)的计算是在温度为300 K,600 K和900 K时进行的。尽管三种材料的塞贝克系数的最佳值均在300 K时找到,但与NaMgN和KMgN相比,发现LiMgN的塞贝克系数的结果更好,并且与Lee等人协调。学习。同样,电导率结果也证明了维德曼-弗朗兹定律。所有三种材料(LiMgN,NaMgN和KMgN)的ZT参数(ZT与1相似)的计算结果表明,研究的材料具有用于热电应用的潜力。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《Materials & design》 |2017年第12期|196-203|共8页
  • 作者单位

    Univ Teknol Malaysia, UTM, Fac Sci, Dept Phys, Skudai 81310, Johor, Malaysia;

    Univ Teknol Malaysia, UTM, Fac Sci, Dept Phys, Skudai 81310, Johor, Malaysia;

    King Khalid Univ, Fac Sci, Dept Phys, Adv Funct Mat & Optoelect Lab AFMOL, POB 9004, Abha, Saudi Arabia;

    Univ Teknol Malaysia, UTM, Fac Sci, Dept Phys, Skudai 81310, Johor, Malaysia;

    King Khalid Univ, Fac Sci, Dept Phys, Adv Funct Mat & Optoelect Lab AFMOL, POB 9004, Abha, Saudi Arabia;

    Tech Univ Munich, ECS, Phys Dept, Garching, Germany;

    Univ Teknol Malaysia, UTM, Fac Sci, Dept Phys, Skudai 81310, Johor, Malaysia;

    Univ Punjab, Ctr High Energy Phys, Quid E Azam Campus, Lahore 54590, Pakistan;

    Univ Punjab, Ctr High Energy Phys, Quid E Azam Campus, Lahore 54590, Pakistan;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Half-Heusler; Electronic properties; Thermoelectric materials. DFT; Energy materials;

    机译:Half-Heusler;电子性能;热电材料。 DFT;能源材料;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号