首页> 外文期刊>Materials & design >Heat-transfer analysis of AZ31B Mg alloys during single-pass flat rolling: Experimental verification and mathematical modeling
【24h】

Heat-transfer analysis of AZ31B Mg alloys during single-pass flat rolling: Experimental verification and mathematical modeling

机译:单道次平板轧制过程中AZ31B镁合金的传热分析:实验验证和数学建模

获取原文
获取原文并翻译 | 示例
       

摘要

The present study aimed to investigate the temperature distribution in AZ31B Mg alloy plate along the thickness direction during the single-pass flat rolling. The detection and tracking of the plate temperature were carried out under different rolling conditions. Due to the influence of the complex heat transfer factors during rolling, the uneven degree of the temperature distribution was different, which was also reflected in microstructure characteristics between different metal layers. The temperature and microstructure both exhibited great similarity between the center and 1/4.H in the rolling due to the main effect of heat generation due to plastic work, while drastic difference between the surface and the center and 1/4.H due to the surface chilling effect. The maximum surface-temperature drop and center-temperature rise through rolling, regarded as the rolling exit temperature-distribution status, both presented mathematical relationships with respect to rolling process parameters. During the modeling process of the maximum surface-temperature drop, the proportion coefficient of chilling layer was identified for AZ31B Mg alloys, and it depends on the work roll temperature. In addition, during the modeling process of the maximum center-temperature rise, the theoretical equation of temperature rise due to plastic deformation could be reasonably simplified for AZ31B Mg alloys. (C) 2017 Elsevier Ltd. All rights reserved.
机译:本研究旨在研究单道次平板轧制过程中AZ31B镁合金板沿厚度方向的温度分布。在不同的轧制条件下进行板温的检测和跟踪。由于轧制过程中复杂的传热因子的影响,温度分布的不均匀程度有所不同,这也反映在不同金属层之间的微观结构特征上。由于塑性加工产生热量的主要作用,温度和组织在轧制中心和1 / 4.H之间都表现出很大的相似性,而表面和中心与1 / 4.H之间的巨大差异是由于塑性加工产生的主要影响。表面冷却效果。通过轧制得到的最大表面温度下降和中心温度升高被认为是轧制出口温度分布状态,两者都呈现出与轧制工艺参数有关的数学关系。在最大表面温度下降的建模过程中,确定了AZ31B镁合金的冷却层比例系数,该系数取决于工作辊温度。此外,在最大中心温度升高的建模过程中,可以合理简化AZ31B镁合金塑性变形引起的温度升高的理论方程。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号