首页> 外文期刊>Materials & design >Prediction of mechanical and fracture properties of rubber composites by microstructural modeling of polymer-filler interfacial effects
【24h】

Prediction of mechanical and fracture properties of rubber composites by microstructural modeling of polymer-filler interfacial effects

机译:通过聚合物-填料界面效应的微观结构模型预测橡胶复合材料的力学和断裂性能

获取原文
获取原文并翻译 | 示例
           

摘要

In nano-dispersed filler containing rubbers, mechanical properties of composites are dictated by the characteristics of surface layers in the interphase as well as the manner in which rubber interacts with filler at the interface. In the present contribution, surface-related and volume-related effects of filler on the reinforcement were distinctively considered in the finite element prediction of mechanical and fracture properties. A unit-cell containing three phases of a single particle, an interphase perfectly bonded to the particle, and the rubber matrix was built. The particle represents the total volume fraction of the filler, and the interphase symbolizes all surface related phenomena of the filler including filler surface area, filler structure, filler-filler interaction and filler-polymer interaction. The J-integral was evaluated to approximate the energy release rate of a crack interacting with the interphase layers having hyper-elastic or hyper-viscoelastic properties. It was shown that the interphase layers are capable of lowering the crack driving force by reducing the level of local strain fields or inducing viscoelastic dissipations. Substitution of the "perfect bonding" interface with a "freely moving" one greatly affected the energy release rate, confirming the experimental evidence that a perfect bonding is not desirable for crack growth resistance. (C) 2016 Elsevier Ltd. All rights reserved.
机译:在包含橡胶的纳米分散填料中,复合材料的机械性能取决于界面相中表面层的特性以及橡胶与界面处的填料相互作用的方式。在目前的贡献中,在力学和断裂性能的有限元预测中,特别考虑了填料对增强材料的表面相关和体积相关影响。构建包含单个颗粒的三相,完美结合到颗粒上的界面和橡胶基质的晶胞。颗粒代表填料的总体积分数,相间符号表示填料的所有与表面相关的现象,包括填料表面积,填料结构,填料-填料相互作用和填料-聚合物相互作用。对J积分进行评估,以估计与具有超弹性或超粘弹性特性的相间层相互作用的裂纹的能量释放速率。结果表明,相间层能够通过减小局部应变场的水平或引起粘弹性耗散来降低裂纹驱动力。用“自由移动”的界面代替“完美的粘合”界面会极大地影响能量释放速率,从而证实了实验证据表明,完美的粘合对于抗裂纹扩展性不是理想的。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号