首页> 外文期刊>Macromolecular reaction engineering >Comparing Long-Chain Branching Mechanisms for Ethylene Polymerization with Metallocenes and Other Single-Site Catalysts: What Simulated Microstructures Can Teach Us
【24h】

Comparing Long-Chain Branching Mechanisms for Ethylene Polymerization with Metallocenes and Other Single-Site Catalysts: What Simulated Microstructures Can Teach Us

机译:乙烯与茂金属和其他单站点催化剂的长链支化机理比较:模拟的微观结构可以教给我们什么

获取原文
获取原文并翻译 | 示例
           

摘要

Three different long-chain branch (LCB) formation mechanisms for ethylene polymerization with metallocenes in solution polymerization semi-batch and continuous stirred-tank reactors are modeled to predict the microstructure of the resulting polymer. The three mechanisms are terminal branching, C-H bond activation, and intramolecular random incorporation. Selected polymerization parameters are varied to observe how each mechanism affects polymer microstructure. Increasing the ethylene concentration during semi-batch polymerization reduces the LCB frequency of polymers made with the terminal branching and intramolecular mechanisms, but has no effect on those made with the C-H bond activation mechanism, which disagrees with most previous data published in the literature. The intramolecular mechanism predicts that LCB frequencies hardly depend on polymerization time or ethylene conversion, which also disagrees with the published experimental data for these systems. For continuous polymerization reactors, experimental data relating polydispersity to LCB frequency can be well described with the terminal branching mechanism, but both C-H bond activation and intramolecular models fail to describe this experimental relationship. Therefore, detailed simulations confirm that the terminal branching mechanism is indeed the most likely mechanism for LCB formation when ethylene is polymerized with single-site coordination catalysts such as metallocenes in solution polymerization reactors.
机译:对溶液聚合半间歇和连续搅拌釜反应器中茂金属进行乙烯聚合的三种不同的长链分支(LCB)形成机理进行了建模,以预测所得聚合物的微观结构。这三种机制是末端分支,C-H键激活和分子内随机掺入。改变所选的聚合参数以观察每种机理如何影响聚合物的微观结构。在半间歇聚合过程中增加乙烯浓度会降低用末端支化和分子内机理制得的聚合物的LCB频率,但对用C-H键活化机理制得的聚合物却没有影响,这与文献中大多数以前发表的数据不一致。分子内机制预测LCB频率几乎不取决于聚合时间或乙烯转化率,这也与这些系统的已公开实验数据不一致。对于连续聚合反应器,可以通过末端支化机理很好地描述将多分散性与LCB频率相关的实验数据,但是C-H键激活和分子内模型均无法描述这种实验关系。因此,详细的模拟证实,当乙烯与单中心配位催化剂(例如茂金属)在溶液聚合反应器中聚合时,末端支化机理确实是最可能形成LCB的机理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号