首页> 外文期刊>The Korean journal of chemical engineering >Effects of carbonization conditions on the microporous structure and high-pressure methane adsorption behavior of glucose-derived graphene
【24h】

Effects of carbonization conditions on the microporous structure and high-pressure methane adsorption behavior of glucose-derived graphene

机译:碳化条件对葡萄糖衍生石墨烯微孔结构和高压甲烷吸附行为的影响

获取原文
获取原文并翻译 | 示例
           

摘要

A simple, promising, environmentally friendly, and high yield technique to synthesize high specific surface area (SSA) and porous graphene-like materials from glucose precursor through carbonization and controlled chemical iron chloride (FeCl3) activation was demonstrated. Designing this nanoporous graphene-based adsorbent with high SSA, abundant micropore volume, tunable pore size distribution, and high adsorption capacity, is crucial in order to deal with the demands of large-scale reversible natural gas storage applications. Raman spectroscopy, BET method of analysis, and N(2)adsorption/desorption measurements at 196 degrees C were adopted to evaluate the structural and textural properties of the resultant glucose derived-graphene (gluGr) samples. The effects of different carbonization conditions, such as the inert environments (argon, helium, and argon) and temperatures (700, 800, 900, and 1,000 degrees C), have been studied. A glucose-derived graphene carbonized under nitrogen environment at 700 degrees C (NGr700) with highly interconnected network of micropores and mesopores and large SSA (767 m(2)/g) exhibited excellent methane (CH4) storage property with exceptionally high adsorption capacity, superior to other glucose-derived graphene (gluGr) samples. A maximum volumetric capacity up to 42.08 cm(3)/g was obtained from CH(4)adsorption isotherm at 25 degrees C and 35 bar. Note that the adsorption performance of the CH(4)is highly associated with the SSA and microporosity of the gluGr samples, especially NGr700 that was successfully synthesized by FeCl(3)activation under N(2)environment.
机译:证明了一种简单,有希望的环保和高产的技术,以通过碳化和受控的化学铁(FECL3)活化从葡萄糖前体合成高比表面积(SSA)和多孔石墨烯样品。设计该纳米多孔石墨烯基吸附剂具有高SSA,微孔体积,可调孔径分布和高吸附容量,至关重要,以应对大规模可逆天然气储存应用的需求。采用拉曼光谱法,BET方法,196摄氏度的N(2)吸附/解吸测量,评价所得葡萄糖衍生 - 石墨烯(GlubR)样品的结构和纹理性质。已经研究了不同碳化条件的影响,例如惰性环境(氩气,氦气和氩气)和温度(700,800,900和1000℃)。在700℃(NGR700)下碳化的葡萄糖衍生的石墨烯,其具有高度互通的微孔和中孔网络和大型SSA(767米(2)/ g),具有出色的吸附能力,呈现出优异的甲烷(CH 4)储存性能,优于其他葡萄糖衍生的石墨烯(gluggr)样品。在25℃和35巴的CH(4)吸附等温线中获得高达42.08cm(3)/ g的最大体积容量。注意,CH(4)的吸附性能与GlugR样品的SSA和微孔的吸附性能高,特别是NGR700,其在N(2)环境下通过FECL(3)活化成功地合成。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号