首页> 外文期刊>Journal of Volcanology and Geothermal Research2012V243-244NOCT,15 >Exploration of geothermal systems using hyperspectral thermal infrared remote sensing
【24h】

Exploration of geothermal systems using hyperspectral thermal infrared remote sensing

机译:利用高光谱热红外遥感探索地热系统

获取原文
获取原文并翻译 | 示例
       

摘要

Visible near infrared (VNIR), short-wave infrared (SWIR), and thermal infrared (TIR) remote sensing has long been used for geothermal exploration. Specific focus on the TIR region (8-12 μrn) has resulted in major-rock-forming mineral classes being identified and their areal percentages to be more easily mapped due in part to the linear mixing behavior of TIR emission. To understand the mineral compositional and thermal distribution of active geothermal surfaces systems, hyperspectral TIR data from the Spatially Enhanced Broadband Array Spectrograph System (SEBASS) airborne sensor were acquired over the Salton Sea, CA geothermal fields by The Aerospace Corporation on March 26, 2009 and April 6, 2010. SEBASS collects 128 wavelength channels at -1 m spatial resolution. Such high resolution data are rarely available for this type of scientific analysis and enabled the identification of rare mineral assemblages associated with the geothermally-active areas. One surface unit with a unique spectrum, believed to be a magnesium sulfate of unknown hydration state, was identified for the first time in the SEBASS data. The abundance and distribution of this mineral varied between 2009 and 2010 likely due to the precipitation conditions. Data obtained by the SEBASS sensor were also regressed to the 32 channel spectral resolution of the Mineral and Gas Identifier (MAGI) airborne sensor in order to test sensitivity limits. At this lower spectral resolution, all surface minerals were still effectively identified and therefore validated data at MAGI resolution are still very effective for accurate surface compositional mapping. A similar approach used at active geothermal areas in other semi-arid regions around the world has the potential to better characterize transient mineralogy, identify "indicators minerals", understand the influence of surface and ground water, and ultimately to locate new geothermal targets for future exploration. Furthermore, new Mineral and Gas Identification (MAGI) data serve as an excellent precursor for future spaceborne TIR data such as the system proposed for the Hyperspectral Infrared Imager (HyspIRI) instrument.
机译:可见光近红外(VNIR),短波红外(SWIR)和热红外(TIR)遥感长期以来一直用于地热勘探。对TIR区域(8-12μrn)的特别关注已导致识别出主要岩石形成的矿物类别,并且它们的面积百分比更易于绘制,这部分是由于TIR发射的线性混合行为所致。为了了解活跃地热表面系统的矿物成分和热分布,航空航天公司于2009年3月26日从加利福尼亚州萨尔顿海地热场获得了空间增强宽带阵列光谱仪(SEBASS)机载传感器的高光谱TIR数据, 2010年4月6日。SEBASS以-1 m空间分辨率收集128个波长通道。这种高分辨率的数据很少用于这种类型的科学分析,并且能够识别与地热活跃地区相关的稀有矿物组合。在SEBASS数据中首次识别出一个具有独特光谱的表面单元,据信是水合状态未知的硫酸镁。该矿物质的丰度和分布在2009年至2010年之间有所变化,这可能是由于降水条件所致。通过SEBASS传感器获得的数据也被回归到矿物和气体标识符(MAGI)机载传感器的32通道光谱分辨率,以测试灵敏度极限。在这种较低的光谱分辨率下,仍能有效地识别所有表面矿物,因此以MAGI分辨率验证的数据对于精确的表面成分作图仍然非常有效。在世界上其他半干旱地区的活跃地热区域中使用的类似方法,有可能更好地表征瞬态矿物学特征,识别“指示性矿物”,了解地表水和地下水的影响,并最终为未来定位新的地热目标勘探。此外,新的矿物和气体识别(MAGI)数据可作为未来星载TIR数据的极佳先驱,例如为高光谱红外成像仪(HyspIRI)仪器建议的系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号