首页> 外文期刊>Journal of Vacuum Science & Technology >Photovoltage versus microprobe sheet resistance measurements on ultrashallow structures
【24h】

Photovoltage versus microprobe sheet resistance measurements on ultrashallow structures

机译:超浅结构的光电压与微探针薄层电阻测量

获取原文
获取原文并翻译 | 示例
           

摘要

Earlier work [T. Clarysse et al., Mater. Sci. Eng., B 114-115, 166 (2004); T. Clarysse et al., Mater. Res. Soc. Symp. Proc. 912, 197 (2006)] has shown that only few contemporary tools are able to measure reliably (within the international technology roadmap for semiconductors specifications) sheet resistances on ultrashallow (sub-50-nm) chemical-vapor-deposited layers [T. Clarysse et al., Mater. Res. Soc. Symp. Proc. 912, 197 (2006)], especially in the presence of medium/highly doped underlying layers (representative for well/halo implants). Here the authors examine more closely the sheet resistance anomalies which have recently been observed between junction photovoltage (JPV) based tools and a micrometer-resolution four-point probe (M4PP) tool on a variety of difficult, state-of-the-art sub-32-nm complementary metal-oxide semiconductor structures (low energy and cluster implants, with/without halo, flash- and laser-based millisecond anneal). Conventional four-point probe tools fail on almost all of these samples due to excessive probe penetration, whereas in several cases variable probe spacing (using a conventional spreading resistance probe tool) [T. Clarysse et al., Mater. Sci. Eng. R. 47, 123 (2004)] still gives useful values to within about 20%-35% due to its limited probe penetration (5-10 nm at 5 g load). M4PP measurements give systematically a sensible and reproducible result. This is also the case for JPV-based sheet resistance measurements, although these appear to be prone to correct calibration procedures and are not designed for the characterization of multijunctions. Moreover, in a significant number of cases, residual damage and/or unexpected junction-leakage currents appear to induce a strong signal reduction, limiting the applicability of the JPV technique. This has been further investigated by transmission-electron microscopy, high carrier-injection photomodulated optical-reflectance, and Synopsis-Sentaurus device simulations.
机译:早期工作[T. Clarysse等,Mater。科学Eng.B 114-115,166(2004); T.Clarysse等,Mater。 Res。 Soc。症状程序[912,197(2006)]显示,只有极少数当代工具能够(在国际半导体技术路线图内)可靠地测量超浅(低于50 nm)化学气相沉积层上的薄层电阻[T。 Clarysse等,Mater。 Res。 Soc。症状程序912,197(2006)],特别是在存在中/高掺杂底层的情况下(代表阱/卤素植入物)。在这里,作者更加仔细地检查了薄层电阻异常,最近发现在各种困难的最新技术下,基于结光电压(JPV)的工具与千分尺分辨率的四点探针(M4PP)工具之间存在薄层电阻异常。 -32-nm互补金属氧化物半导体结构(低能量和团簇注入,具有/不具有基于光晕,基于闪光和激光的毫秒退火)。常规的四点探针工具几乎会由于过度的探针穿透而无法对所有这些样品进行测试,而在某些情况下,探针间距会发生变化(使用传统的扩展电阻探针工具)[T。 Clarysse等,Mater。科学。 R. 47,123(2004)]由于其有限的探针穿透力(在5 g载荷下为5-10 nm),仍可将有用值控制在约20%-35%之内。 M4PP测量系统地给出了合理且可重复的结果。对于基于JPV的薄层电阻测量,情况也是如此,尽管这些似乎倾向于正确的校准程序,并且并非设计用于表征多结。此外,在许多情况下,残余损坏和/或意外的结漏电流似乎会引起强烈的信号衰减,从而限制了JPV技术的适用性。这已经通过透射电子显微镜,高载流子注入光调制光学反射率以及Synopsis-Sentaurus器件仿真进行了进一步研究。

著录项

  • 来源
    《Journal of Vacuum Science & Technology》 |2010年第1期|p.C1C8-C1C14|共7页
  • 作者单位

    IMEC, Kapeldreef 75, B-3001 Leuven, Belgium;

    IMEC, Kapeldreef 75, B-3001 Leuven, Belgium;

    IMEC, Kapeldreef 75, B-3001 Leuven, Belgium;

    IMEC, Kapeldreef 75, B-3001 Leuven, Belgium;

    IMEC, Kapeldreef 75, B-3001 Leuven, Belgium and Instituut voor Kern-en Stralingsfysika, K. U. Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium;

    IMEC, Kapeldreef 75, B-3001 Leuven, Belgium;

    Fraunhofer IISB, Schottkystrasse 10, D-91058 Erlangen, Germany;

    Fraunhofer IISB, Schottkystrasse 10, D-91058 Erlangen, Germany;

    Capres A/S, Scion-DTU, Building 373, DK-2800 Kongens Lyngby, Denmark;

    Capres A/S, Scion-DTU, Building 373, DK-2800 Kongens Lyngby, Denmark;

    Capres A/S, Scion-DTU, Building 373, DK-2800 Kongens Lyngby, Denmark;

    Department of Micro- and Nanotechnology, DTU Nanotech, Technical University of Denmark, Building 345 East, DK-2800 Kgs. Lyngby, Denmark and Capres A/S, Scion-DTU, Building 373, DK-2800 Kongens Lyngby, Denmark;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号