首页> 外文期刊>Journal of Vacuum Science & Technology >Laser nitriding of niobium for application to superconducting radio-frequency accelerator cavities
【24h】

Laser nitriding of niobium for application to superconducting radio-frequency accelerator cavities

机译:铌的激光氮化用于超导射频加速器腔

获取原文
获取原文并翻译 | 示例
           

摘要

Particle accelerators are a key tool for scientific research ranging from fundamental studies of matter to analytical studies at light sources. Cost-for-performance is critical, both in terms of initial capital outlay and ongoing operating expense, especially for electricity. The major factor is the niobium superconducting radio frequency (SRF) accelerator cavities at the heart of many of these machines. Presently, niobium SRF cavities operate near 1.9 K, well below the 4.2 K atmospheric boiling point of liquid helium to obtain sufficient performance. The consequent electric power costs are the most significant limit to operate the SRF cavities at 1.9 K. Transforming the cavity interior surface from niobium to S niobium nitride δNbN) with a critical temperature (T_c)≌ 17 K instead of 9.2 K, appears to be a promising approach to raising the operating temperature. The traditional furnace method has nitrided niobium, but apparently have not been able to obtain δNbN.1 Moreover, furnace nitriding requires exposing the complete SRF cavity to an aggressive time-temperature history, risking mechanical distortion. As an alternative, laser gas nitriding has been applied successfully to a number of metals. A very recent review is available. The beam dimensions and thermal diffusion length permit modeling in one dimension to predict the time course of the surface temperature for a range of per-pulse energy densities. As with the earlier work,2 we chose conditions just sufficient for boiling of the niobium surface as a reference point. The treated materials were examined by scanning electron microscopy (SEM), electron probe microanalysis and × ray diffraction (XRD). The SEM images show a sharp transition with fluence from a smooth, undulating topography to significant roughening, interpreted here as the onset of ablation. Electron probe microanalysis measurements found a constant value of the nitrogeniobium atom ratio to depths greater than the SRF active layer thickness. Certain irradiation conditions resulted in atomic ratio values consistent with formation of δNbN, and XRD data indicated only δNbN on top of the niobium metal.
机译:粒子加速器是科学研究的关键工具,其范围从物质的基础研究到光源的分析研究。从初始资本支出和持续运营支出(尤其是电力)而言,性能成本至关重要。主要因素是许多此类机器的心脏都装有铌超导射频(SRF)加速器腔。目前,铌的SRF腔在1.9 K附近工作,远低于液态氦的4.2 K大气沸点,以获得足够的性能。因此,电力成本是在1.9 K下操作SRF腔体的最大限制。在临界温度(T_c)≌17 K而不是9.2 K的情况下,将腔体内表面从铌转变为氮化铌N(δNbN)似乎是一种提高工作温度的有前途的方法。传统的熔炉方法已经氮化了铌,但显然无法获得δNbN。1此外,熔炉的氮化要求将整个SRF腔体暴露在剧烈的时间-温度历史中,从而存在机械变形的风险。作为替代方案,激光气体氮化已成功应用于多种金属。最近有一个评论。光束尺寸和热扩散长度允许在一维建模,以预测一系列脉冲能量密度下表面温度的时程。与早期的工作一样,2我们选择刚好足以使铌表面沸腾的条件作为参考点。通过扫描电子显微镜(SEM),电子探针显微分析和X射线衍射(XRD)检查处理的材料。 SEM图像显示出从平滑,起伏的形貌到明显的粗糙化的通量急剧变化,此处被解释为消融的开始。电子探针微分析测量发现,对于大于SRF活性层厚度的深度,氮/铌原子比的恒定值。某些辐照条件导致原子比值与δNbN的形成一致,并且XRD数据仅表明在铌金属顶部具有δNbN。

著录项

  • 来源
    《Journal of Vacuum Science & Technology》 |2011年第6期|p.061803.1-061803.6|共6页
  • 作者单位

    Department of Physics, Old Dominion University, Norfolk, Virginia 23529;

    rnThomas Jefferson National Accelerator Facility, Newport News, Virginia 23606;

    rnDepartment of Physics, Old Dominion University, Norfolk, Virginia 23529 and Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606;

    rnDepartment of Physics, Old Dominion University, Norfolk, Virginia 23529 Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606 Applied Science Department, The College of William and Mary, Williamsburg, Virginia 23187;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号