首页> 外文期刊>Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures >Formation of large-area GaN nanostructures with controlled geometry and morphology using top-down fabrication scheme
【24h】

Formation of large-area GaN nanostructures with controlled geometry and morphology using top-down fabrication scheme

机译:使用自上而下的制造方案形成具有受控几何形状和形态的大面积GaN纳米结构

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

This paper details the fabrication of GaN nanoscale structures using deep ultraviolet lithography and inductively coupled plasma (ICP) etching techniques. The authors controlled the geometry (dimensions and shape) and surface morphology of such nanoscale structures through selection of etching parameters. The authors compared seven different chlorine-based etch chemistries: Cl2, Ar, Cl2/N2, Cl2/Ar, Cl2/N2/Ar, Cl2/H2/Ar, and Cl2/He/Ar. The authors found that nitrogen plays a significant role in fabricating high quality etched GaN nanostructures. This paper presents the effects of varying the etch parameters, including gas chemistry, gas flow rate, ICP power, rf power, chamber pressure, and substrate temperature, on the etch characteristics, including etch rate, sidewall angle, anisotropy, mask erosion, and surface roughness. Dominant etch mechanisms in relation to the observed characteristics of the etched features are discussed. Utilizing such methods, the authors demonstrated the fabrication of nanoscale structures with designed shapes and dimensions over large area. Nanocolumns with diameter of 120 nm and height of 1.6 μm with sidewall angle of 86° (90° represent a vertical sidewall) were fabricated. Nanocones with tip diameter of 30 nm and height of 1.6 μm with sidewall angle of 70° were demonstrated. Such structures could potentially be used in light-emitting diodes, laser diodes, photodetectors, vertical transistors, field emitters, and photovoltaic devices. This study indicates the feasibility of top-down methods in the fabrication of next-generation nitride-based nanoscale devices, with large-area uniformity and scalability.
机译:本文详细介绍了使用深紫外光刻和感应耦合等离子体(ICP)蚀刻技术制造GaN纳米级结构的方法。作者通过选择蚀刻参数来控制此类纳米级结构的几何形状(尺寸和形状)和表面形态。作者比较了七种不同的基于氯的蚀刻化学:Cl2,Ar,Cl2 / N2,Cl2 / Ar,Cl2 / N2 / Ar,Cl2 / H2 / Ar和Cl2 / He / Ar。作者发现,氮在制造高质量的GaN蚀刻纳米结构中起着重要作用。本文介绍了改变蚀刻参数的影响,包括气体化学性质,气体流速,ICP功率,射频功率,腔室压力和衬底温度,对蚀刻特性的影响,包括蚀刻率,侧壁角度,各向异性,掩模腐蚀和表面粗糙度。讨论了与蚀刻特征的观察特征相关的主要蚀刻机制。利用这种方法,作者展示了在大面积上具有设计形状和尺寸的纳米级结构的制造。制备直径为120 nm,高度为1.6μm,侧壁角为86°(90°表示垂直侧壁)的纳米柱。纳米锥的尖端直径为30 nm,高度为1.6μm,侧壁角度为70°。这样的结构可以潜在地用于发光二极管,激光二极管,光电探测器,垂直晶体管,场发射器和光伏器件中。这项研究表明自顶向下方法在制造具有大面积均匀性和可扩展性的下一代氮化物基纳米级器件中的可行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号