首页> 外文期刊>Journal of Vacuum Science & Technology. B, Microelectronics and Nanometer Structures >Maximum achievable aspect ratio in deep reactive ion etching of silicon due to aspect ratio dependent transport and the microloading effect
【24h】

Maximum achievable aspect ratio in deep reactive ion etching of silicon due to aspect ratio dependent transport and the microloading effect

机译:由于依赖于纵横比的传输和微负载效应,在硅的深反应离子刻蚀中可实现的最大纵横比

获取原文
获取原文并翻译 | 示例
           

摘要

When etching high-aspect-ratio silicon features using deep reactive ion etching (DRIE), researchers find that there is a maximum achievable aspect ratio, which we define as the critical aspect ratio, of an etched silicon trench using a DRIE process. At this critical aspect ratio, the apparent etch rate (defined as the total depth etched divided by the total elapsed time) no longer monotonically decreases as the aspect ratio increases, but abruptly drops to zero. In this paper, we propose a theoretical model to predict the critical aspect ratio and reveal its causal mechanism. The model considers aspect ratio dependent transport mechanisms specific to each of the reactant species in the three subprocesses of a time-multiplexed etch cycle: deposition of a fluorocarbon passivation layer, etching of the fluorocarbon polymer at the bottom of the trench, and the subsequent etching of the underlying silicon. The model predicts that the critical aspect ratio is defined by the aspect ratio at which the polymer etch rate equals the product of the deposition rate and the set time ratio between the deposition and etching phases for the time-multiplexed process. Several DRIE experiments were performed to qualitatively validate the model. Both model simulations and experimental results demonstrate that the magnitude of the critical aspect ratio primarily depends on (ⅰ) the relative flux of neutral species at the trench opening, i.e., the microloading effect, and (ⅱ) aspect ratio dependent transport of ions during the polymer etching subprocess of a DRIE cycle.
机译:当使用深反应离子刻蚀(DRIE)来刻蚀高纵横比的硅部件时,研究人员发现,使用DRIE工艺刻蚀的硅沟槽存在最大可实现的纵横比,我们将其定义为临界纵横比。在此临界纵横比下,表观蚀刻速率(定义为蚀刻的总深度除以总经过时间)不再随纵横比的增加而单调降低,而是突然降至零。在本文中,我们提出了一个理论模型来预测临界纵横比并揭示其成因机理。该模型考虑了时间复用蚀刻循环的三个子过程中特定于每种反应物物种的长宽比相关的传输机制:碳氟化合物钝化层的沉积,沟槽底部的碳氟化合物聚合物的蚀刻以及后续的蚀刻底层硅。该模型预测,关键纵横比由纵横比定义,在该纵横比下,聚合物蚀刻速率等于沉积速率与时分复用工艺在沉积和蚀刻阶段之间的设定时间比例的乘积。进行了几次DRIE实验以定性验证模型。模型仿真和实验结果均表明,临界纵横比的大小主要取决于(ⅰ)沟槽开口处中性物质的相对通量,即微负载效应,以及(ⅱ)离子在沉积过程中依赖于纵横比的迁移。 DRIE循环的聚合物蚀刻子过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号