首页> 外文期刊>Journal of Vacuum Science & Technology. B, Microelectronics and Nanometer Structures >Interfacial strain-induced self-organization in semiconductor dielectric gate stacks. I. Strain relief at the Si-SiO2 interface
【24h】

Interfacial strain-induced self-organization in semiconductor dielectric gate stacks. I. Strain relief at the Si-SiO2 interface

机译:半导体介质栅叠层中界面应变引起的自组织。 I.Si-SiO2界面处的应力消除

获取原文
获取原文并翻译 | 示例
       

摘要

It has been demonstrated that Si-SiO2 interfaces in field effect transistors are not atomically abrupt, but instead contain: (i) an interfacial transition region similar to0.5 nm thick with an average SiO composition as well as (ii) a strained or defective region in the Si substrate that is of similar extent. The strain profile across these interfacial transition regions, compressive in the SiO2 and tensile in the Si substrate, results from a combination of growth induced strain, as well as differences between the linear expansion coefficients of SiO2 and the substrate Si. Two high-temperature transitions modify the strain profile, and the transition region bonding at the Si-SiO2 interface. The first is a visco-elastic relaxation in the SiO2 occurring at similar to1000 degreesC, and the second is associated with bonding changes within the interfacial transition region occurring at similar to900 degreesC. This article uses spectroscopic studies to identify the chemical bonding changes within the interfacial transitions region that occur after 900 degreesC annealing in an inert ambient. The physical and chemical forces that drive these changes are addressed from two perspectives: (i) reactions kinetics and (ii) bond constraint theory. Finally the effects of strain relief on device performance and reliability are discussed. (C) 2004 American Vacuum Society.
机译:已经证明,场效应晶体管中的Si-SiO2界面不是原子突变的,而是包含:(i)具有平均SiO成分的,类似于0.5 nm厚的界面过渡区域,以及(ii)应变或缺陷硅衬底中具有相似程度的区域。跨越这些界面过渡区域的应变分布,是在SiO2中压缩而在Si基片中是拉伸的,这是由生长引起的应变以及SiO2和基片Si的线性膨胀系数之间的差异引起的。两个高温过渡区改变了应变曲线,过渡区在Si-SiO2界面处键合。第一个是在类似于1000摄氏度的条件下发生的SiO2的粘弹性松弛,第二个与在类似于900摄氏度的条件下发生的界面过渡区域内的键合变化有关。本文使用光谱研究来确定在惰性环境中900摄氏度退火后发生的界面转变区域内的化学键变化。从两个角度解决了驱动这些变化的物理和化学力:(i)反应动力学和(ii)键约束理论。最后讨论了应力消除对器件性能和可靠性的影响。 (C)2004年美国真空学会。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号