首页> 外文期刊>Journal of turbomachinery >Prediction of Ingress Through Turbine Rim Seals-Part Ⅱ: Combined Ingress
【24h】

Prediction of Ingress Through Turbine Rim Seals-Part Ⅱ: Combined Ingress

机译:透平轮缘密封件的进气预测-第二部分:组合进气

获取原文
获取原文并翻译 | 示例
           

摘要

In Part I of this two-part paper, the orifice equations were solved for the case of externally induced (El) ingress, where the effects of rotational speed are negligible. In Part II, the equations are solved, analytically and numerically, for combined ingress (CI), where the effects of both rotational speed and external flow are significant. For the CI case, the orifice model requires the calculation of three empirical constants, including C_(d,e, RI) and C_(d,e, EI), the discharge coefficients for rotationally induced (RI) and El ingress. For the analytical solutions, the external distribution of pressure is approximated by a linear saw-tooth model; for the numerical solutions, a fit to the measured pressures is used. It is shown that although the values of the empirical constants depend on the shape of the pressure distribution used in the model, the theoretical variation of C_(w,min) (the minimum nondimensional sealing flow rate needed to prevent ingress) depends principally on the magnitude of the peak-to-trough pressure difference in the external annulus. The solutions of the orifice model for C_(w,min) are compared with published measurements, which were made over a wide range of rotational speeds and external flow rates. As predicted by the model, the experimental values of C_(w,min) could be collapsed onto a single curve, which connects the asymptotes for RI and El ingress at the respective smaller and larger external flow rates. At the smaller flow rates, the experimental data exhibit a minimum value of C_(w,min), which undershoots the RI asymptote. Using an empirical correlation for C_(d,e), the model is able to predict this undershoot, albeit smaller in magnitude than the one exhibited by the experimental data. The limit of the El asymptote is quantified, and it is suggested how the orifice model could be used to extrapolate the effectiveness data obtained from an experimental rig to engine-operating conditions.
机译:在这个由两部分组成的论文的第一部分中,针对外部感应(El)进入的情况求解了孔口方程,在这种情况下,转速的影响可忽略不计。在第二部分中,对于组合入口(CI)进行了解析和数值求解,该方程对转速和外流的影响都很大。对于CI情况,节流孔模型需要计算三个经验常数,包括C_(d,e,RI)和C_(d,e,EI),旋转感应(RI)和El进入的排放系数。对于解析解,压力的外部分布通过线性锯齿模型进行近似;对于数值解,使用对测量压力的拟合。结果表明,尽管经验常数的值取决于模型中使用的压力分布的形状,但C_(w,min)(防止进入所需的最小无量纲密封流量)的理论变化主要取决于外环上峰谷压差的大小。将孔口模型C_(w,min)的解与公开的测量结果进行比较,这些测量结果是在很宽的转速和外部流速范围内进行的。如模型所预测的,C_(w,min)的实验值可以折叠到一条曲线上,该曲线以相应的较小和较大的外部流速连接RI和El进入的渐近线。在较小的流速下,实验数据显示出最小值C_(w,min),低于RI渐近线。使用C_(d,e)的经验相关性,该模型能够预测这种下冲,尽管其幅度小于实验数据所显示的下冲。 El渐近线的极限已被量化,并建议如何使用节流孔模型将从试验台获得的有效性数据外推至发动机工作条件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号