首页> 外文期刊>Journal of turbomachinery >Numerical Investigation of Compound Angle Effusion Cooling Using Differential Reynolds Stress Model and Zonal Detached Eddy Simulation Approaches
【24h】

Numerical Investigation of Compound Angle Effusion Cooling Using Differential Reynolds Stress Model and Zonal Detached Eddy Simulation Approaches

机译:差分雷诺应力模型和带状分离涡模拟方法的复式角射流冷却的数值研究

获取原文
获取原文并翻译 | 示例
       

摘要

Effusion cooling is one of the most effective and widespread techniques to prevent com-bustor liner from being damaged. However, most recent developments in combustion techniques, resulting from increasingly stricter air pollution regulations, have highlighted the necessity of reducing the amount of air available for effusion cooling while keeping an adequate level of protection. Adoption of compound angles in effusion cooling is increasingly recognized by jet engine manufacturers as a powerful solution to meet new combustor requirements. Therefore, understanding the flow behavior and developing methods able to provide accurate estimates of wall temperatures is of a major importance. This study assesses the capability of a high-level Reynolds-averaged Navier-Stokes (RANS) method, differential Reynolds stress model (DRSM), in conjunction with a generalized gradient diffusion hypothesis (GGDH), and of a hybrid RANS-large eddy simulations (LES) method, zonal detached eddy simulation (ZDES), to predict overall film effectiveness. Both approaches are compared with the experimental data from Zhang et al. (2009, "Cooling Effectiveness of Effusion Walls With Deflection Hole Angles Measured by Infrared Imaging," Appl. Therm. Eng., 29(5), pp. 966-972) and with a classical well-known RANS model (κ-ω shear-stress transport (SST) model). Despite the fact that some discrepancies are found, both approaches have proved suitable and reliable for predicting wall temperatures (relative errors of about 5%). Moreover, a new method to deal with ZDES length scales for unstructured grids is proposed. ZDES applicability and its general advantages and drawbacks are also discussed. Finally, an in-depth analysis of the film structure is carried out on the basis of the ZDES simulations. The principal structures are identified (an asymmetric main vortex (AMV) and a counter rotating vortex pair, CRVP), and the film formation mechanisms are presented. Significant spanwise-homogeneous distributions of surface overall film cooling effectiveness are observed.
机译:喷射冷却是防止燃烧器衬套损坏的最有效,最广泛的技术之一。然而,由于日益严格的空气污染法规,燃烧技术的最新发展突显了在保持适当保护水平的同时,必须减少可用于排放冷却的空气量。喷射发动机制造商越来越多地在排放冷却中采用复合角,这是满足燃烧室新要求的有力解决方案。因此,了解流动行为和开发方法能够提供壁温的准确估计非常重要。这项研究评估了高级雷诺平均Navier-Stokes(RANS)方法,差分雷诺应力模型(DRSM)以及广义梯度扩散假设(GGDH)以及混合RANS-大涡模拟的能力。 (LES)方法,区域分离涡模拟(ZDES),以预测整体电影效果。两种方法都与Zhang等人的实验数据进行了比较。 (2009年,“带有通过红外成像测量的偏转孔角的积水壁的冷却效果”,应用热工程学,第29卷,第5期,第966-972页)和经典的RANS模型(κ-ω剪应力传输(SST)模型)。尽管发现了一些差异,但是这两种方法均已证明适用于预测壁温(相对误差约为5%)。此外,提出了一种处理非结构化网格的ZDES长度尺度的新方法。还讨论了ZDES的适用性及其一般优缺点。最后,在ZDES模拟的基础上对薄膜结构进行了深入分析。确定了主要结构(非对称主旋涡(AMV)和反向旋涡对CRVP),并介绍了成膜机理。观察到整个薄膜冷却效率的显着展向均匀分布。

著录项

  • 来源
    《Journal of turbomachinery》 |2016年第10期|101001.1-101001.11|共11页
  • 作者单位

    SAFRAN-SNECMA, Moissy-Cramayel 77550, France;

    ONERA-The French Aerospace Lab, Toulouse 31055, France;

    ONERA-The French Aerospace Lab, Toulouse 31055, France;

    SAFRAN-SNECMA, Moissy-Cramayel 77550, France;

    ONERA-The French Aerospace Lab, Toulouse 31055, France;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号