首页> 外文学位 >Detached eddy simulation of turbulent flow and heat transfer in turbine blade internal cooling ducts.
【24h】

Detached eddy simulation of turbulent flow and heat transfer in turbine blade internal cooling ducts.

机译:涡轮叶片内部冷却管道中湍流和传热的分离涡流模拟。

获取原文
获取原文并翻译 | 示例

摘要

Detached Eddy Simulations (DES) is a hybrid URANS-LES technique that was proposed to obtain computationally feasible solutions of high Reynolds number flows undergoing massive separation with reliable accuracy. Since its inception, DES has been applied to a wide variety of flow fields, but mostly limited to unbounded external aerodynamic flows. This is the first study to apply and validate DES to predict the internal flow and heat transfer in non-canonical flows of industrial relevance. The prediction capabilities of DES in capturing the effects of Coriolis forces, which are induced by rotation, and centrifugal buoyancy forces, which are induced by thermal gradients, are also authenticated.; The accurate prediction of turbulent flows is sensitive to the level of turbulence predicted by the turbulence scheme. By treating the regions of interest in LES mode, DES allows the unsteadiness in these regions to develop and hence predicts the turbulence levels accurately. Additionally, this permits DES to capture the effects of system rotation and buoyancy. Computations on a rotating system (a sudden expansion duct) and a system subjected to thermal gradients (cavity with a heated wall) validate the prediction capability of DES.; The application of DES is further extended to a non-canonical, internal flow which is of relevance in internal cooling of gas turbine blades. Computations of the fully developed flow and heat transfer shows that DES surpasses several shortcomings of the RANS model on which it is based. DES accurately predicts the primary and secondary flow features, the turbulence characteristics and the heat transfer in stationary ducts and in rotating ducts, where the effects of Coriolis forces and centrifugal buoyancy forces are dominant. DES computations are carried out at a computational cost that is almost an order of magnitude less than the LES with little compromise on the accuracy.; However, the capabilities of DES in predicting the transition to turbulence are inadequate, as highlighted by the flow features and the heat transfer in the developing region of the duct. But once the flow becomes fully turbulent, DES predicts the flow physics and shows good quantitative agreement with the experiments and LES.
机译:分离涡流模拟(DES)是一种URANS-LES混合技术,旨在获得可靠分离的高雷诺数流经过大规模分离的计算可行解。自成立以来,DES已应用于各种流场,但主要限于无限制的外部空气动力流。这是首次应用和验证DES来预测与工业相关的非规范流中的内部流和热传递的第一项研究。还验证了DES在捕获由旋转引起的科里奥利力和由热梯度引起的离心浮力的影响方面的预测能力。湍流的精确预测对湍流方案所预测的湍流水平很敏感。通过以LES模式处理感兴趣的区域,DES允许这些区域中的不稳定状态发展,因此可以准确地预测湍流水平。另外,这允许DES捕获系统旋转和浮力的影响。在旋转系统(突然膨胀的管道)和承受热梯度的系统(带加热壁的腔)上的计算验证了DES的预测能力。 DES的应用进一步扩展到非规范的内部流,该流与燃气轮机叶片的内部冷却有关。对充分发展的流动和传热的计算表明,DES克服了它所基于的RANS模型的几个缺点。 DES可以准确预测固定管道和旋转管道中的主要和次要流动特征,湍流特性和传热,在这些管道中,科里奥利力和离心浮力的影响最为明显。 DES计算的计算量比LES少了近一个数量级,而准确性却很少受到影响。然而,如在管道的发展区域中的流动特征和热传递所强调的那样,DES预测湍流过渡的能力是不足的。但是,一旦流动完全湍流,DES就可以预测流动的物理性质,并与实验和LES表现出良好的定量一致性。

著录项

  • 作者

    Viswanathan, Aroon K.;

  • 作者单位

    Virginia Polytechnic Institute and State University.;

  • 授予单位 Virginia Polytechnic Institute and State University.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 182 p.
  • 总页数 182
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号