首页> 外文期刊>Journal of turbomachinery >Large-Eddy Simulation With Zonal Near Wall Treatment of Flow and Heat Transfer in a Ribbed Duct for the Internal Cooling of Turbine Blades
【24h】

Large-Eddy Simulation With Zonal Near Wall Treatment of Flow and Heat Transfer in a Ribbed Duct for the Internal Cooling of Turbine Blades

机译:涡轮叶片内部冷却的带肋近壁带肋管道内流动和传热的大涡模拟

获取原文
获取原文并翻译 | 示例
           

摘要

Large eddy simulations of flow and heat transfer in a square ribbed duct with rib height to hydraulic diameter of 0.1 and 0.05 and rib pitch to rib height ratio of 10 and 20 are carried out with the near wall region being modeled with a zonal two layer model. A novel formulation is used for solving the turbulent boundary layer equation for the effective tangential velocity in a generalized co-ordinate system in the near wall zonal treatment. A methodology to model the heat transfer in the zonal near wall layer in the large eddy simulations (LES) framework is presented. This general approach is explained for both Dirichlet and Neumann wall boundary conditions. Reynolds numbers of 20,000 and 60,000 are investigated. Predictions with wall modeled LES are compared with the hydrodynamic and heat transfer experimental data of (Rau et al. 1998, "The Effect of Periodic Ribs on the Local Aerodynamic and Heat Transfer Performance of a Straight Cooling Channel,"ASME J. Turbomach., 120, pp. 368-375). and (Han et al. 1986, "Measurement of Heat Transfer and Pressure Drop in Rectangular Channels With Turbulence Promoters," NASA Report No. 4015), and wall resolved LES data of Tafti (Tafti, 2004, "Evaluating the Role of Subgrid Stress Modeling in a Ribbed Duct for the Internal Cooling of Turbine Blades," Int. J. Heat Fluid Flow 26, pp. 92-104). Friction factor, heat transfer coefficient, mean flow as well as turbulent statistics match available data closely with very good accuracy. Wall modeled LES at high Reynolds numbers as presented in this paper reduces the overall computational complexity by factors of 60-140 compared to resolved LES, without any significant loss in accuracy.
机译:在肋高与水力直径为0.1和0.05且肋距与肋高比为10和20的方肋管道中,对大流量涡流进行了大的涡流模拟,其中近壁区域通过带区域的两层模型进行了建模。 。一种新颖的公式用于求解湍流边界层方程,用于近壁分区处理中的广义坐标系中的有效切向速度。提出了一种在大型涡模拟(LES)框架中对区域近壁层中的热传递进行建模的方法。对于Dirichlet和Neumann壁边界条件都说明了这种通用方法。研究了20,000和60,000的雷诺数。将壁面模拟LES的预测与(Rau等人,1998,“周期性肋骨对直冷通道的局部空气动力和传热性能的影响”,ASME J. Turbomach, 120,第368-375页)。 (Han等,1986,“用湍流促进剂测量矩形通道内的传热和压降”,NASA第4015号报告),以及塔夫提的LES壁解析数据(Tafti,2004年,“评估亚网格应力的作用”)。涡轮叶片内部冷却的带肋风管建模,“ Int。J.热流体流26,第92-104页。摩擦系数,传热系数,平均流量以及湍流统计数据非常准确地紧密匹配了可用数据。与解析后的LES相比,本文中提出的高雷诺数墙模型LES将整体计算复杂度降低了60-140倍,而准确性没有任何显着损失。

著录项

  • 来源
    《Journal of turbomachinery》 |2013年第3期|031006.1-031006.11|共11页
  • 作者

    Sunil Patil; Danesh Tafti;

  • 作者单位

    Virginia Tech,Blacksburg, Virginia 24061;

    Virginia Tech,Blacksburg, Virginia 24061;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号